|   | 
Details
   web
Records
Author De Schepper, V.C.J.; Holvoet, K.M.A.; Benedetti, L.; Seuntjens, P.; Vanrolleghem, P.A.
Title Extension of the river water quality model no. 1 with the fate of pesticides Type A1 Journal article
Year 2012 Publication Journal of hydroinformatics Abbreviated Journal
Volume 14 Issue 1 Pages (down) 48-64
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The existing River Water Quality Model No. 1 (RWQM1) was extended with processes determining the fate of non-volatile pesticides in the water phase and sediments. The exchange of pesticides between the water column and the sediment is described by three transport processes: diffusion, sedimentation and resuspension. Burial of sediments is also included. The modified model was used to simulate the concentrations of diuron and chloridazon in the river Nil. A good agreement was found between the simulated pesticide concentrations and measured values resulting from a four-month intensive monitoring campaign. The simulation results indicate that pesticide concentrations in the bulk water are not sensitive to the selected biochemical model parameters. it seems that these concentrations are mainly determined by the imposed upstream concentrations, run-off and direct losses. The high concentrations in the bulk water were not observed in the sediment pore water due to a limited exchange between the water column and the sediment. According to a sensitivity analysis, the observed pesticide concentrations are highly sensitive to the diffusion and sorption coefficients. Therefore, model users should determine these parameters with accuracy in order to reduce the degree of uncertainty in their results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298618300004 Publication Date 2011-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1464-7141 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:96257 Serial 7954
Permanent link to this record
 

 
Author Cools, J.; Broekx, S.; Vandenberghe, V.; Seuntjens, P.; e.a.
Title Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen Type A1 Journal article
Year 2011 Publication Environmental modelling and software Abbreviated Journal
Volume 26 Issue 1 Pages (down) 44-51
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A modelling approach is presented that determines the most cost-effective set of reduction measures to reach an in-stream concentration target. The framework is based on the coupling of two models: the hydrological water quality model SWAT and an economic optimization model (Environmental Costing Model, ECM). SWAT is used to determine the relationship between the modelled in-stream concentration at the river basin outlet and the associated emission reduction. The ECM is used to set up marginal abatement cost curves for nutrients and oxygen demanding substances. Results for nitrogen are presented for the Grote Nete river basin in Belgium for the year 2006. Results show that the good status for total nitrogen can be reached in the study area. The most cost-effective measures are more productive dairy cattle, implementing basic measures as defined in the WFD, winter cover crops, improved efficiency of WWTP, enhanced fodder efficiency for pigs, further treatment of industrial waste water and tuned fertilization. (C) 2010 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283891600007 Publication Date 2010-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:95529 Serial 7740
Permanent link to this record
 

 
Author Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y.
Title Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide Type A1 Journal article
Year 2019 Publication Current Opinion in Environmental Sustainability Abbreviated Journal
Volume 36 Issue Pages (down) 39-48
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Global water quality (WQ) modeling is an emerging field. In this article, we identify the missing linkages between global and basin/local-scale WQ models, and discuss the possibilities to fill these gaps. We argue that WQ models need stronger linkages across spatial scales. This would help to identify effective scale-specific WQ management options and contribute to future development of global WQ models. Two directions are proposed to improve the linkages: nested multiscale WQ modeling towards enhanced water management, and development of next-generation global WQ models based-on basin/local-scale mechanistic understanding. We highlight the need for better collaboration among WQ modelers and policy-makers in order to deliver responsive water policies and management strategies across scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460234600006 Publication Date 2018-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-3435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158643 Serial 7568
Permanent link to this record
 

 
Author Carniato, L.; Schoups, G.; van de Giesen, N.; Seuntjens, P.; Bastiaens, L.; Sapion, H.
Title Highly parameterized inversion of groundwater reactive transport for a complex field site Type A1 Journal article
Year 2015 Publication Journal of contaminant hydrology Abbreviated Journal
Volume 173 Issue Pages (down) 38-58
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study a numerical groundwater reactive transport model of a shallow groundwater aquifer contaminated with volatile organic compounds is developed. In addition to advective-dispersive transport, the model includes contaminant release from source areas, natural attenuation, abiotic degradation by a permeable reactive barrier at the site, and dilution by infiltrating rain. Aquifer heterogeneity is parameterized using pilot points for hydraulic conductivity, specific yield and groundwater recharge. A methodology is developed and applied to estimate the large number of parameters from the limited data at the field site (groundwater levels, groundwater concentrations of multiple chemical species, point-scale measurements of soil hydraulic conductivity, and lab-scale derived information on chemical and biochemical reactions). The proposed methodology relies on pilot point parameterization of hydraulic parameters and groundwater recharge, a regularization procedure to reconcile the large number of spatially distributed model parameters with the limited field data, a step-wise approach for integrating the different data sets into the model, and high performance computing. The methodology was proven to be effective in reproducing multiple contaminant plumes and in reducing the prior parameter uncertainty of hydraulic conductivity and groundwater recharge. Our results further indicate that contaminant transport predictions are strongly affected by the choice of the groundwater recharge model and flow parameters should be identified using both head and concentration measurements. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348878900004 Publication Date 2014-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125290 Serial 8041
Permanent link to this record
 

 
Author Rezaei, M.; Saey, T.; Seuntjens, P.; Joris, I.; Boenne, W.; Van Meirvenne, M.; Cornelis, W.
Title Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed apparent electrical conductivity Type A1 Journal article
Year 2016 Publication Journal of applied geophysics Abbreviated Journal
Volume 126 Issue Pages (down) 35-41
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Finding a correspondence between soil hydraulic properties, such as saturated hydraulic conductivity (Ks) and apparent electrical conductivity (ECa) as an easily measurable parameter, may be a way forward to estimate the spatial distribution of hydraulic properties at the field scale. In this study, the spatial distributions of Ks, of soil ECa measured by a DUALEM-21S sensor and of soil physical properties were investigated in a sandy grassland. To predict field scale Ks, the statistical relationship between co-located soil Ks, and EMI-ECa was evaluated. Results demonstrated the large spatial variability of all studied properties with Ks being the most variable one (CV = 86.21%) followed by ECa (CV >= 53.77%). A significant negative correlation was found between In-transformed Ks and ECa (r = 0.83; P <= 0.01) at two depths of exploration (0-50 and 0-100 cm). This site specific relation between In Ks and ECa was used to predict saturated hydraulic conductivity over 0-50 cm depth for the whole field. The empirical relation was validated using an independent dataset of measured Ks. The statistical results demonstrate the robustness of this empirical relation with mean estimation error MEE = 0.46 (cm h(-1)), root-mean-square estimation errors RMSEE = 0.74 (cm h(-1)), coefficient of determination r(2) = 0.67 and coefficient of model efficiency Ce = 0.64. The relationship was then used to produce a detailed map of Ks for the whole field. The result will allow model predictions of spatially distributed water content in view of irrigation management. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371361200004 Publication Date 2016-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-9851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:132349 Serial 8403
Permanent link to this record
 

 
Author Schneidewind, U.; Haest, P.J.; Atashgahi, S.; Seuntjens, P.; et al.
Title Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources Type A1 Journal article
Year 2014 Publication Journal of contaminant hydrology Abbreviated Journal
Volume 157 Issue Pages (down) 25-36
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stimulated anaerobic dechlorination is generally considered a valuable step for the remediation of aquifers polluted with chlorinated ethenes (CEs). Correct simulation and prediction of this process in situ, however, require good knowledge of the associated biological reactions. The aim of this study was to evaluate the dechlorination reaction in an aquifer contaminated with trichloroethene (TCE) and its daughter products, discharging into the Zenne River. Different carbon sources were used in batch cultures and these were related to the dechlorination reaction, together with the monitored biomarkers. Appropriate kinetic formulations were assessed. Reductive dechlorination of TCE took place only when external carbon sources were added to microcosms, and occurred concomitant with a pronounced increase in the Dehalococcoides mccartyi cell count as determined by 16S rRNA gene-targeted qPCR. This indicates that native dechlorinating bacteria are present in the aquifer of the Zenne site and that the oligotrophic nature of the aquifer prevents a complete degradation to ethene. The type of carbon source, the cell number of D. mccartyi or the reductive dehalogenase genes, however, did not unequivocally explain the observed differences in degradation rates or the extent of dechlorination. Neither first-order, Michaelis-Menten nor Monod kinetics could perfectly simulate the dechlorination reactions in TCE spiked microcosms. A sensitivity analysis indicated that the inclusion of donor limitation would not significantly enhance the simulations without a clear process understanding. Results point to the role of the supporting microbial community but it remains to be verified how the complexity of the microbial (inter)actions should be represented in a model framework. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000331507700003 Publication Date 2013-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:115794 Serial 8138
Permanent link to this record
 

 
Author Velimirovic, M.; Carniato, L.; Simons, Q.; Schoups, G.; Seuntjens, P.; Bastiaens, L.
Title Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements Type A1 Journal article
Year 2014 Publication Journal of hazardous materials Abbreviated Journal
Volume 270 Issue Pages (down) 18-26
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZV1 particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (R-SA) and reaction rate constants (K-SA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZV1 particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH-) on the iron corrosion rate. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000335109200003 Publication Date 2014-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:117179 Serial 7738
Permanent link to this record
 

 
Author Bollen, E.; Pagan, B.R.; Kuijpers, B.; Van Hoey, S.; Desmet, N.; Hendrix, R.; Dams, J.; Seuntjens, P.
Title A database system for querying of river networks : facilitating monitoring and prediction applications Type A1 Journal article
Year 2021 Publication Water Science And Technology-Water Supply Abbreviated Journal Water Sci Tech-W Sup
Volume Issue Pages (down)
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The increasing availability of real-time in situ measurements and remote sensing observations have the potential to contribute to the optimization of water resources management. Global challenges such as climate change, intensive agriculture and urbanization put a high pressure on our water resources. Due to recent innovations in measuring both water quantity and quality, river systems can now be monitored in real time at an unprecedented spatial and temporal scale. To interpret the sensor measurements and remote sensing observations additional data for example on: the location of the measurement, upstream and downstream catchment characteristics, horizontal ellipsis are required. In this paper, we present a data management system to support flow-path related functionality for decision making and prediction modelling. Adding meta data sets and facilitating (near) real-time processing of sensor data questions are key concepts for the systems. The potential of the database framework for hydrological applications is demonstrated using different applications for the river system of Flanders. In one, the database framework is used to simulate the daily discharge for each segment within a catchment using a simple data-driven approach. The presented system is useful for numerous applications including pollution tracking, alerting and inter-sensor validation in river systems, or related networks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000729755100001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1606-9749 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.573 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 0.573
Call Number UA @ admin @ c:irua:184814 Serial 7387
Permanent link to this record