|   | 
Details
   web
Records
Author Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, N.M.; Terentev, V.B.; Berdiyorov, G.R.
Title Effect of neutron irradiation on the characteristics of laser-produced plasma Type A1 Journal article
Year 2010 Publication Nuclear fusion Abbreviated Journal Nucl Fusion
Volume 50 Issue 2 Pages (up) 025024,1-025024,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the mass-spectrometric method we studied the formation of multi-charged plasma ions during the interaction of laser radiation with solid targets irradiated by neutron beams. We found that structural defects, caused by the neutron irradiation, influence not only the efficiency of the process of material evaporation and emission of plasma, but also the ionization and recombination processes taking place at the initial stage of plasma formation and expansion. We also show the effect of the dose of neutron irradiation on the threshold of plasma formation from the surface of the target.
Address
Corporate Author Thesis
Publisher Place of Publication Vienna Editor
Language Wos 000275322200029 Publication Date 2010-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 3 Open Access
Notes ; This work was supported by MINVIZ Uzbekistan and by IAEA (No 13738). G. R. B acknowledges support from FWO-Vlaanderen. ; Approved Most recent IF: 3.307; 2010 IF: 3.303
Call Number UA @ lucian @ c:irua:81769 Serial 825
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Mehmood, U.; Peeters, F.M.; Tabet, N.; Zhang, J.; Hussein, I.A.; McLachlan, M.A.
Title Derivatization and diffusive motion of molecular fullerenes : ab initio and atomistic simulations Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages (up) 025101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C-60 fullerene. As a typical example, we consider [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C-60 and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C-60 is an order of magnitude larger than the one for PCBM. (c) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000357961000036 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes ; K.H., U.M. and I.A.H. would like to thank the National Science, Technology and Innovation Program of KACST for funding this research under Project No. 12-ENE2379-04. They also acknowledge support from KFUPM and Research Institute. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:127098 Serial 652
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages (up) 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Stabilized vortex-antivortex molecules in a superconducting microdisk with a magnetic nanodot on top Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue 5 Pages (up) 052502,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000244532600020 Publication Date 2007-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:63790 Serial 3141
Permanent link to this record
 

 
Author Silhanek, A.V.; Leo, A.; Grimaldi, G.; Berdiyorov, G.R.; Milošević, M.V.; Nigro, A.; Pace, S.; Verellen, N.; Gillijns, W.; Metlushko, V.; Ilić, B.; Zhu, X.; Moshchalkov, V.V.;
Title Influence of artificial pinning on vortex lattice instability in superconducting films Type A1 Journal article
Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
Volume 14 Issue Pages (up) 053006-053006,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In superconducting films under an applied dc current, we analyze experimentally and theoretically the influence of engineered pinning on the vortex velocity at which the flux-flow dissipation undergoes an abrupt transition from low to high resistance. We argue, based on a nonuniform distribution of vortex velocity in the sample, that in strongly disordered systems the mean critical vortex velocity for flux-flow instability (i) has a nonmonotonic dependence on magnetic field and (ii) decreases as the pinning strength is increased. These findings challenge the generally accepted microscopic model of Larkin and Ovchinnikov (1979 J. Low. Temp. Phys. 34 409) and all subsequent refinements of this model which ignore the presence of pinning centers.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000304871700003 Publication Date 2012-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 40 Open Access
Notes ; This work was supported by the Methusalem Funding of the Flemish Government, the ESF-NES program, the Belgian Science Policy (IAP) and the Fund for Scientific Research-Flanders (FWO-Vlaanderen). AVS, GRB and WG received individual support from FWO-Vlaanderen. GG acknowledges support from the research project L.R. N5 of Regione Campania. VM acknowledges financial support from the US NSF, grant no. ECCS-0823813. We acknowledge J Van de Vondel for a critical reading of the manuscript. ; Approved Most recent IF: 3.786; 2012 IF: 4.063
Call Number UA @ lucian @ c:irua:98949 Serial 1616
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Oktasendra, F.; Gasmi, K.; Mansour, A.I.; Maneval, J.P.; Peeters, F.M.
Title Dynamics of current-driven phase-slip centers in superconducting strips Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 5 Pages (up) 054506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Phase-slip centers/lines and hot spots are the main mechanisms for dissipation in current-carrying superconducting thin films. The pulsed-current method has recently been shown to be an effective tool in studying the dynamics of phase-slip centers and their evolution to hot spots. We use the time-dependent Ginzburg-Landau theory in the study of the dynamics of the superconducting condensate in superconducting strips under external current and zero external magnetic field. We show that both the flux-flow state (i.e., slow-moving vortices) and the phase-slip line state (i.e., fast-moving vortices) are dynamically stable dissipative units with temperature smaller than the critical one, whereas hot spots, which are localized normal regions where the local temperature exceeds the critical value, expand in time, resulting ultimately in a complete destruction of the condensate. The response time of the system to abrupt switching on of the overcritical current decreases with increasing both the value of the current (at all temperatures) and temperature (for a given value of the applied current). Our results are in good qualitative agreement with experiments we have conducted on Nb thin strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344656700003 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by EU Marie Curie Project No. 253057, the Flemish Science Foundation (FWO-Vl), and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:121229 Serial 775
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Reply to “Comment on 'Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements' ” Type Editorial
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 5 Pages (up) 056502
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract Our calculations, within known limitations of Ginzburg-Landau theory, are fully correct and valid for transport phenomena in asymmetric mesoscopic superconductors, deep in the superconducting state. We deemed the experiments of Burlakov et al. [JETP Lett. 86, 517 (2007)] relevant and important to mention in the general context of our paper since the observed shifts in the oscillations of different quantities are qualitatively similar, even though those measurements are performed close to the superconducting-normal state transition in the so-called Little-Parks regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341266400006 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119256 Serial 2876
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Latimer, M.L.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M.
Title Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 5 Pages (up) 057004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to current-excited moving vortices, where the applied current in competition with the oscillating Meissner currents imposes or removes the barriers for vortex motion in an increasing magnetic field. Because of the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-critical temperature (T-c) samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-T-c samples.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000306994900024 Publication Date 2012-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 65 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the U. S. Department of Energy (DOE) Award No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the focused-ion-beam milling was performed. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:100832 Serial 1780
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Yu, S.H.; Xiao, Z.L.; Peeters, F.M.; Hua, J.; Imre, A.; Kwok, W.K.
Title Effect of sample geometry on the phase boundary of a mesoscopic superconducting loop Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 6 Pages (up) 064511,1-064511,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We studied the effect of sample geometry on the evolution of the superconducting state in nanoscale Nb circular and square loops by transport measurements. A multistage resistive transition with temperature is found for both samples, which is related to the effect of contact leads made from the same superconducting material. The H-T phase diagrams close to Tc0 show clear periodic oscillations on top of a parabolic background, i.e., Little-Parks effect. However, the amplitude of the oscillations decreases faster in the circular loop compared to the one in the square sample. Numerical simulations are conducted within the nonlinear Ginzburg-Landau theory to show the effect of sample geometry on the nucleation of superconductivity in superconducting loop structures.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000269638800067 Publication Date 2009-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:78292 Serial 833
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Peeters, F.M.; Kwok, W.K.
Title Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages (up) 067001-67005
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322799200013 Publication Date 2013-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 63 Open Access
Notes ; This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. ; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:110750 Serial 2836
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernández-Nieves, A.D.; Milošević, M.V.; Peeters, F.M.; Dominguez, D.
Title Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic type-I superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 9 Pages (up) 092502-092502,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study nonlinear flux dynamics in a current-carrying type-I superconductor. The stray magnetic field of the current induces the intermediate state, where nucleation of flux domains is discretized to a single fluxoid at a time, while their final shape (tubular or laminar), size, and nucleation rate depend on applied current and edge conditions. The current induces opposite flux domains on opposite sides of the sample, and subsequently drives them to annihilation-which is also discretized, as a sequence of vortex-antivortex pairs. The discretization of both nucleation and annihilation leaves measurable traces in the voltage across the sample and in locally probed magnetization. The reported dynamic phenomena thus provide an unambiguous proof of a flux quantum being the smallest building block of the intermediate state in type-I superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301183000002 Publication Date 2012-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Belgian Science Policy (IAP), the Flemish Science Foundation (FWO-Vl), and the collaborative project FWO-MINCyT (Project No. FW/08/01). G. R. B. and A. D. H acknowledge support from FWO-Vl. A. D. H. and D. D. acknowledge support from CONICET, CNEA, and ANPCyT (Grant No. PICT07-824). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97180 Serial 1243
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Cabral, L.R.E.; Peeters, F.M.
Title Surface barrier for flux entry and exit in mesoscopic superconducting systems Type A1 Journal article
Year 2005 Publication Journal of mathematical physics Abbreviated Journal J Math Phys
Volume 46 Issue 9 Pages (up) 095105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy barrier which has to be overcome for a single vortex to enter or exit the sample is studied for thin superconducting disks, rings, and squares using the nonlinear Ginzburg-Landau theory. The shape and the height of the nucleation barrier is investigated for different sample radii and thicknesses and for different values of the Ginzburg-Landau parameter kappa. It is shown that the London theory considerably overestimates (underestimates) the energy barrier for vortex expulsion (penetration). (c) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000232206700005 Publication Date 2005-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.077 Times cited 18 Open Access
Notes Approved Most recent IF: 1.077; 2005 IF: 1.192
Call Number UA @ lucian @ c:irua:103142 Serial 3393
Permanent link to this record
 

 
Author Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, M.M.; Kalal, M.; Berdiyorov, G.R.
Title Effect of light gas atom inclusions on the characteristics of laser-produced plasma ions Type A1 Journal article
Year 2011 Publication Nuclear fusion Abbreviated Journal Nucl Fusion
Volume 51 Issue 10 Pages (up) 103041,1-103041,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the mass-spectrometric method we studied the effect of light gas inclusions on the formation process of multi-component laser-induced plasma ions. Masscharge characteristics, as well as energy and spatial distribution of the plasma ions are analysed. We found that both the energy and maximal charge of heavy component ions decrease due to the presence of gas atoms in the solid target surface layer.
Address
Corporate Author Thesis
Publisher Place of Publication Vienna Editor
Language Wos 000296603800043 Publication Date 2011-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.307; 2011 IF: 4.090
Call Number UA @ lucian @ c:irua:93761 Serial 821
Permanent link to this record
 

 
Author Liu, C.-Y.; Berdiyorov, G.R.; Milošević, M.V.
Title Vortex states in layered mesoscopic superconductors Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 10 Pages (up) 104524-104524,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the Ginzburg-Landau theory, we study the vortex structures in three-dimensional anisotropic mesoscopic superconductors in the presence of a uniform magnetic field. Anisotropy is included through varied Tc in different layers of the sample and leads to distinct differences in the vortex states and their free energy. Several unconventional states are found, some comprising vortex clusters or exhibiting asymmetry. In a tilted magnetic field, we found second-order transitions between different vortex states, although vortex entry is generally a first-order transition in mesoscopic samples. In multilayered samples the kinked vortex strings are formed owing to the competing interactions of vortices with Meissner currents and the weak-link boundaries. The length and deformation of vortex fragments are determined solely by the inclination and strength of applied magnetic field, and this lock-in does not depend on the degree of anisotropy between the superconducting layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288998200003 Publication Date 2011-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89375 Serial 3888
Permanent link to this record
 

 
Author Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, M.M.; Kalal, M.; Berdiyorov, G.R.
Title Conditions defining the mechanisms of the formation of light gas ions in multicomponent laser-produced plasmas Type A1 Journal article
Year 2010 Publication Nuclear fusion Abbreviated Journal Nucl Fusion
Volume 50 Issue 10 Pages (up) 105007,1-105007,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the mass-spectrometric method we study the charge, energy and spatial characteristics of ions in multicomponent plasma, generated under the action of Nd : YAG laser radiation on the surface of solid targets. We focus on the effect of the entry form of light gas atoms on the parameters of ions in such laser-produced plasmas. We found that the presence of light gas atoms considerably affects the parameters (e.g. the intensity and the charge multiplicity) of the heavier ions.
Address
Corporate Author Thesis
Publisher Place of Publication Vienna Editor
Language Wos 000281859300008 Publication Date 2010-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.307; 2010 IF: 3.303
Call Number UA @ lucian @ c:irua:84876 Serial 476
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 10 Pages (up) 107001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700014 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101850 Serial 3801
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of edge groups on the electronic transport properties of tetrapodal diazatriptycene molecule Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 141 Issue Pages (up) 115212-115216
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We conduct ballistic transport calculations to study the electronic transport properties of diazatriptycene molecule which can be self-assembled on metallic surfaces with uniform coverage and upright orientation of the functional head group. Due to its structural asymmetry, the molecule shows a clear current rectification, where the level of the rectification depends on the nature of the head group. For example, current rectification can be increased by more than a factor of 2 by anchoring the molecules to the electrode by CN functional group or introducing insulating CH2 group between the thiol end group and the adjacent phenyl ring. Our findings show the possibility of creating self-assembled monolayer of DAT molecules with controlled electronic transport properties through functionalization of the head group.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000806548600006 Publication Date 2022-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:189041 Serial 7147
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 144 Issue Pages (up) 115428-6
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000857051700007 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:191500 Serial 7148
Permanent link to this record
 

 
Author Andelkovic, M.; Rakhimov, K.Y.; Chaves, A.; Berdiyorov, G.R.; Milošević, M.V.
Title Wave-packet propagation in a graphene geometric diode Type A1 Journal article
Year 2023 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal
Volume 147 Issue Pages (up) 115607-4
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Dynamics of electron wave-packets is studied using the continuum Dirac model in a graphene geometric diode where the propagation of the wave packet is favored in certain direction due to the presence of geometric constraints. Clear rectification is obtained in the THz frequency range with the maximum rectification level of 3.25, which is in good agreement with recent experiments on graphene ballistic diodes. The rectification levels are considerably higher for systems with narrower channels. In this case, the wave packet transmission probabilities and rectification rate also strongly depend on the energy of the incident wave packet, as a result of the quantum nature of energy levels along such channels. These findings can be useful for fundamental understanding of the charge carrier dynamics in graphene geometry diodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903737000003 Publication Date 2022-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.3; 2023 IF: 2.221
Call Number UA @ admin @ c:irua:193497 Serial 7351
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Kusmartsev, F.V.; Peeters, F.M.
Title In-phase motion of Josephson vortices in stacked SNS Josephson junctions : effect of ordered pinning Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 12 Pages (up) 125010-125016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions is investigated using the anisotropic time-dependent Ginzburg-Landau theory in the presence of a square/rectangular array of pinning centers (holes). For small values of the applied drive, fluxons in different junctions move out of phase, forming a periodic triangular lattice. A rectangular lattice of moving fluxons is observed at larger currents, which is in agreement with previous theoretical predictions (Koshelev and Aranson 2000 Phys. Rev. Lett. 85 3938). This 'superradiant' flux-flow state is found to be stable in a wide region of applied current. The stability range of this ordered state is considerably larger than the one obtained for the pinning-free sample. Clear commensurability features are observed in the current-voltage characteristics of the system with pronounced peaks in the critical current at (fractional) matching fields. The effect of density and strength of the pinning centers on the stability of the rectangular fluxon lattice is discussed. Predicted synchronized motion of fluxons in the presence of ordered pinning can be detected experimentally using the rf response of the system, where enhancement of the Shapiro-like steps is expected due to the synchronization.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000327447200013 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 5 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057) and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:112834 Serial 1573
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Savel'ev, S.; Kusmartsev, F.; Peeters, F.M.
Title Parametric amplification of vortex-antivortex pair generation in a Josephson junction Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 13 Pages (up) 134505
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using advanced three-dimensional simulations, we show that an Abrikosov vortex, trapped inside a cavity perpendicular to an artificial Josephson junction, can serve as a very efficient source for generation of Josephson vortex-antivortex pairs in the presence of the applied electric current. In such a case, the nucleation rate of the pairs can be tuned in a broad range by an out-of-plane ac magnetic field in a broad range of frequencies. This parametrically amplified vortex-antivortex nucleation can be considered as a macroscopic analog of the dynamic Casimir effect, where fluxon pairs mimic the photons and the ac magnetic field plays the role of the oscillating mirrors. The emerging vortex pairs in our system can be detected by the pronounced features in the measured voltage characteristics, or through the emitted electromagnetic radiation, and exhibit resonant dynamics with respect to the frequency of the applied magnetic field. Reported tunability of the Josephson oscillations can be useful for developing high-frequency emission devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344025100003 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Leverhulme Trust. G.R.B. acknowledges support from a EU-Marie Curie individual grant (Grant No. 253057) ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:121176 Serial 2553
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Superconducting films with weak pinning centers: incommenssurate vortex lattices Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 13 Pages (up) 134508,1-134508,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000250619800087 Publication Date 2007-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:67348 Serial 3353
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 14 Pages (up) 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Clem, J.R.; Mawatari, Y.; Berdiyorov, G.R.; Peeters, F.M.
Title Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 14 Pages (up) 144511-144511,16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length xi but much smaller than the Pearl length Lambda = 2 lambda(2)/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90 degrees or 180 degrees turns, the zero-field critical current at H = 0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302611100004 Publication Date 2012-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes ; This research, supported in part by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, was performed in part at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work also was supported in part by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98263 Serial 2695
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 14 Pages (up) 144511,1-144511,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular superconducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the leads, different kinetic inductance of the two paths for injected electric current leads to different critical conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring equilibration between the two current flows and the conventional resistive state can be realized. We also demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-metal leads, for applied currents comparable in magnitude to the screening currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000277210200107 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES program, and the ESF-AQDJJ network. G.R.B. acknowledges support from FWO-Vlaanderen. The authors thank S. Michotte for useful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82804 Serial 3901
Permanent link to this record
 

 
Author Lipavsky, P.; Elmurodov, A.; Lin, P.-J.; Matlock, P.; Berdiyorov, G.R.
Title Effect of normal current corrections on the vortex dynamics in type-II superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 14 Pages (up) 144516-144518
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the time-dependent Ginzburg-Landau theory we discuss the effect of nonmagnetic interactions between the normal current and supercurrent in the presence of electric and magnetic fields. The correction due to the current-current interactions is shown to have a transient character so that it contributes only when a system evolves. Numerical studies for thin current-carrying superconducting strips with no magnetic feedback show that the effect of the normal current corrections is more pronounced in the resistive state where fast-moving kinematic vortices are formed. Simulations also reveal that the largest contribution due to current-current interactions appears near the sample edges, where the vortices reach their maximal velocity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309809700007 Publication Date 2012-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; The authors are grateful to Alex Gurevich and Tom Lemberger who brought the longitudinal f-sum rule to our attention. This work was supported by Grants GACR P204/10/0687 and P204/11/0015. We also acknowledge the support from the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vl. P.-J.L. acknowledges support from Old Dominion University. P.M. acknowledges support through UA research index SR-614-1203. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102168 Serial 827
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Mesoscopic field and current compensator based on a hybrid superconductor-ferromagnet structure Type A1 Journal article
Year 2005 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 95 Issue Pages (up) 147004,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000232229800059 Publication Date 2005-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 44 Open Access
Notes Approved Most recent IF: 8.462; 2005 IF: 7.489
Call Number UA @ lucian @ c:irua:57244 Serial 1999
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.
Title Finite-size effect on the resistive state in a mesoscopic type-II superconducting stripe Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 17 Pages (up) 174506,1-174506,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the time-dependent Ginzburg-Landau (TDGL) theory we studied the creation of phase-slip lines and the interplay with a vortex lattice in a finite-length superconducting thin stripe with finite-size normal metal leads. In zero magnetic field and with increasing transport current phase-slip lines appear across the sample leading to distinct jumps in the current-voltage characteristics. When a magnetic field is applied, the moving vortex lattice becomes rearranged by the external current and fast and slow moving vortex channels are formed. Curved vortex channels are observed near the normal contacts. We found the remarkable result that at small applied magnetic field the normal-state transition current is increased as compared to the one at zero magnetic field. This effect is more pronounced for larger values of the parameter in the TDGL formalism. This unusual field-induced increase in the critical current is a consequence of the nonuniform distribution of the current in the sample.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000266501100096 Publication Date 2009-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77398 Serial 1196
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortex configurations and critical parameters in superconducting thin films containing antidot arrays: nonlinear Ginzburg-Landau theory Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 17 Pages (up) Artn 174512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000242409000118 Publication Date 2006-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 97 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:61927 Serial 3862
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Baelus, B.J.; Milošević, M.V.; Peeters, F.M.
Title Stability and transition between vortex configurations in square mesoscopic samples with antidots Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages (up) 174521,1-19
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000186971600089 Publication Date 2003-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:44984 Serial 3121
Permanent link to this record