|   | 
Details
   web
Records
Author Lawson, N.C.; Janyavula, S.; Çakir, D.; Burgess, J.O.
Title An analysis of the physiologic parameters of intraoral wear: a review Type A1 Journal article
Year 2013 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 40 Pages (down) Unsp 404007
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2-7 and 5-55 degrees C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 2013-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:128322 Serial 4585
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.
Title Manipulation of two-electron states by the electric field in stacked self-assembled dots Type A1 Journal article
Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 20 Issue 39 Pages (down) 395225,1-395225,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A pair of electrons in vertically stacked self-assembled quantum dots is studied and the singlettriplet energy splitting is calculated in an external electric field using the configuration-interaction method. We show that for double quantum dots the dependence of the singlet energy levels on the electric field involves multiple avoided crossings of three energy levels. The exchange interaction, i.e., the energy difference of the lowest triplet and lowest singlet states, can be tuned by an electric field in a wide range of several tens of meV. For electric fields exceeding a threshold value the exchange interaction becomes a linear function of the field when the two electrons in the singlet state start to occupy the same dot. We also consider non-symmetric confinement, non-perfectly aligned dots, in horizontal as well as vertical field orientation. In a stack of three vertically coupled dots the depth of the confinement in the central dot can be used to enhance the exchange interaction. For a deeper central dot the dependence of the exchange interaction on the electric field is anomalousit initially decreases when the field is applied in both directions parallel and antiparallel to the axis of the stack. Such a behavior is never observed for a pair of quantum dots.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000259034200032 Publication Date 2008-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Approved Most recent IF: 2.649; 2008 IF: 1.900
Call Number UA @ lucian @ c:irua:76592 Serial 1940
Permanent link to this record
 

 
Author Wang, H.; Wang, W.; Yan, J.D.; Qi, H.; Geng, J.; Wu, Y.
Title Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 39 Pages (down) 395204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al's derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto's electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000410390100001 Publication Date 2017-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:145603 Serial 4754
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages (down) 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 36 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Hieu, N.N.; Ghergherehchi, M.; Feghhi, S.A.H.; Gogova, D.
Title Prediction of two-dimensional bismuth-based chalcogenides Bi₂X₃(X = S, Se, Te) monolayers with orthorhombic structure : a first-principles study Type A1 Journal article
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages (down) 395103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles calculation is a very powerful tool for discovery and design of novel two-dimensional materials with unique properties needed for the next generation technology. Motivated by the successful preparation of Bi2S3 nanosheets with orthorhombic structure in the last year, herein we gain a deep theoretical insight into the crystal structure, stability, electronic and optical properties of Bi2X3 (X = S, Se, Te) monolayers of orthorhombic phase employing the first-principles calculations. The Molecular dynamics study, phonon spectra, criteria for elastic stability, and cohesive energy results confirm the desired stability of the Bi2X3 monolayers. From S, to Se and Te, the work function value as well as stability of the systems decrease due to the decline in electronegativity. Mechanical properties study reveals that Bi2X3 monolayers have brittle nature. The electronic bandgap values of Bi2S3, Bi2Se3 and Bi2Te3 monolayers are predicted by the HSE06 functional to be 2.05, 1.20 and 1.16 eV, respectively. By assessing the optical properties, it has been found that Bi2X3 monolayers can absorb ultraviolet light. The high in-plane optical anisotropy offers an additional degree of freedom in the design of optical devices. The properties revealed in our survey will stimulate and inspire the search for new approaches of orthorhombic Bi2X3 (X = S, Se, Te) monolayers synthesis and properties manipulation for fabrication of novel nanoelectronic and optoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464700001 Publication Date 2021-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:179863 Serial 7014
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type A1 Journal Article;plasma catalysis
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages (down) 394004
Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464100001 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808
Permanent link to this record
 

 
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Confined states in graphene quantum blisters Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 38 Pages (down) 385301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000443135000001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Dussart, R.; Neyts, E.C.; Bogaerts, A.
Title Elucidating the effects of gas flow rate on an SF6inductively coupled plasma and on the silicon etch rate, by a combined experimental and theoretical investigation Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue 49 Pages (down) 385201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Experiments show that the etch rate of Si with SF6 inductively coupled plasma (ICP) is significantly influenced by the absolute gas flow rate in the range of 50–600 sccm, with a maximum at around 200 sccm. Therefore, we numerically investigate the effects of the gas flow rate on the bulk plasma properties and on the etch rate, to obtain more insight in the underlying reasons of this effect. A hybrid Monte Carlo—fluid model is applied to simulate an SF6 ICP. It is found that the etch rate is influenced by two simultaneous effects: (i) the residence time of the gas and (ii) the temperature profile of the plasma in the ICP volume, resulting indeed in a maximum etch rate at 200 sccm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384095900011 Publication Date 2016-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 1 Open Access
Notes We are very grateful to Mark Kushner for providing the computational model. The Fund for Scientific Research Flanders (FWO; grant no. 0880.212.840) is acknowledged for financial support of this work. The work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 2.588
Call Number c:irua:134867 Serial 4108
Permanent link to this record
 

 
Author Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Hörmann, U.; Van Tendeloo, G.; Mlayah, A.; Murray, D.B.; Saviot, L.; Zhou, Y.; Hong, M.H.; Luk'yanchuk, B.S.
Title Surface enhanced Raman scattering of silver sensitized cobalt nanoparticles in metaldielectric nanocomposites Type A1 Journal article
Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 19 Issue 37 Pages (down) 375701,1-375701,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000258385600018 Publication Date 2008-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 11 Open Access
Notes Approved Most recent IF: 3.44; 2008 IF: 3.446
Call Number UA @ lucian @ c:irua:81873 Serial 3396
Permanent link to this record
 

 
Author Llobet, E.; Espinosa, E.H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J.J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.;
Title Carbon nanotube TiO2 hybrid films for detecting traces of O2 Type A1 Journal article
Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 19 Issue 37 Pages (down) 375501-375511
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <= 10 ppm) in a flow of CO(2), which is of interest for the beverage industry.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000258385600014 Publication Date 2008-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 48 Open Access
Notes Pai Approved Most recent IF: 3.44; 2008 IF: 3.446
Call Number UA @ lucian @ c:irua:103083 Serial 282
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.; Costa Filho, R.N.
Title The electronic properties of graphene and graphene ribbons under simple shear strain Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 37 Pages (down) 375301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A tight-binding model is used to study the energy band of graphene and graphene ribbon under simple shear strain. The ribbon consists of lines of carbon atoms in an armchair or zigzag orientation where a simple shear strain is applied in the x-direction keeping the atomic distances in the y-direction unchanged. Such modification in the lattice gives an energy band that differs in several aspects from the one without any shear and with pure shear. The changes in the spectrum depend on the line displacement of the ribbon, and also on the modified hopping parameter. It is also shown that this simple shear strain tunes the electronic properties of both graphene and graphene ribbon, opening and closing energy gaps for different displacements of the system. The modified density of states is also shown.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000308202700011 Publication Date 2012-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 15 Open Access
Notes ; This work was supported by CNPq (RNCF), the National Council for the Improvement of Higher Education (CAPES), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:101838 Serial 1000
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T.
Title The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
Year 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 55 Issue 37 Pages (down) 373001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000821410400001 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4
Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075
Permanent link to this record
 

 
Author Wang, J.; Shin, Y.; Gauquelin, N.; Yang, Y.; Lee, C.; Jannis, D.; Verbeeck, J.; Rondinelli, J.M.; May, S.J.
Title Physical properties of epitaxial SrMnO2.5−δFγoxyfluoride films Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 36 Pages (down) 365602
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO2.5−δ F γ films were synthesized via topotactic fluorination of SrMnO2.5 films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO3 films were also prepared for comparison with the fluorinated samples. The F content, probed by x-ray photoemission spectroscopy, was systematically controlled by adjusting fluorination conditions. Electronic transport measurements reveal that increased F content (up to γ  =  0.14) systematically increases the electrical resistivity, despite the nominal electron-doping induced by F substitution for O in these films. In contrast, oxidized SrMnO3 exhibits a decreased resistivity and conduction activation energy. A blue-shift of optical absorption features occurs with increasing F content. Density functional theory calculations indicate that F acts as a scattering center for electronic transport, controls the observed weak ferromagnetic behavior of the films, and reduces the inter-band optical transitions in the manganite films. These results stand in contrast to bulk electron-doped La1−x Ce x MnO3, illustrating how aliovalent anionic substitutions can yield physical behavior distinct from A-site substituted perovskites with the same nominal B-site oxidation states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472232000002 Publication Date 2019-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Work at Drexel was supported by the National Science Foundation (NSF), grant number CMMI-1562223. Thin film synthesis utilized deposition instrumentation acquired through an Army Research Office DURIP grant (W911NF-14-1-0493). Y.S and J.M.R. were supported by NSF (Grant No. DMR-1454688). Calculations were performed using the QUEST HPC Facility at Northwestern, the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575, and the Center for Nanoscale Materials (Carbon Cluster). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.V. and N. G. acknowledge funding from a GOA project “Solarpaint” of the University of Antwerp. D.J. acknowledges funding from FWO project G093417N from the Flemish fund for scientific research. Approved Most recent IF: 2.649
Call Number EMAT @ emat @UA @ admin @ c:irua:161174 Serial 5293
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Validity criteria for Fermi's golden rule scattering rates applied to metallic nanowires Type A1 Journal article
Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 28 Issue 28 Pages (down) 365302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Fermi's golden rule underpins the investigation of mobile carriers propagating through various solids, being a standard tool to calculate their scattering rates. As such, it provides a perturbative estimate under the implicit assumption that the effect of the interaction Hamiltonian which causes the scattering events is sufficiently small. To check the validity of this assumption, we present a general framework to derive simple validity criteria in order to assess whether the scattering rates can be trusted for the system under consideration, given its statistical properties such as average size, electron density, impurity density et cetera. We derive concrete validity criteria for metallic nanowires with conduction electrons populating a single parabolic band subjected to different elastic scattering mechanisms: impurities, grain boundaries and surface roughness.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000380754400013 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:135011 Serial 4274
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A.
Title Atomic scale understanding of the permeation of plasma species across native and oxidized membranes Type A1 Journal article
Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 36 Pages (down) 365203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasmas (CAPs) have attracted significant interest for their potential benefits in medical applications, including cancer therapy. The therapeutic effects of CAPs are related to reactive oxygen and nitrogen species (ROS and RNS) present in the plasma. The impact of ROS has been extensively studied, but the role of RNS in CAP-treatment remains poorly understood at the molecular level. Here, we investigate the permeation of RNS and ROS across native and oxidized phospholipid bilayers (PLBs) by means of computer simulations. The results reveal significantly lower free energy barriers for RNS (i.e. NO, NO2, N2O4) and O3 compared to hydrophilic ROS, such as OH, HO2 and H2O2. This suggests that the investigated RNS and O3 can permeate more easily through both native and oxidized PLBs in comparison to hydrophilic ROS, indicating their potentially important role in plasma medicine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441182400002 Publication Date 2018-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access OpenAccess
Notes M Y gratefully acknowledges financial support from the Research Foundation—Flanders (FWO), grant 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. RMC thanks FAPESP and CNPq for financial support (grants 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:152824 Serial 5005
Permanent link to this record
 

 
Author Wang, M.; Chang, K.; Wang, L.G.; Dai, N.; Peeters, F.M.
Title Crystallographic plane tuning of charge and spin transport in semiconductor quantum wires Type A1 Journal article
Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 20 Issue 36 Pages (down) 365202,1-365202,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spinorbit interaction (RSOI) and the Dresselhaus spinorbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000269077000003 Publication Date 2009-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 14 Open Access
Notes Approved Most recent IF: 3.44; 2009 IF: 3.137
Call Number UA @ lucian @ c:irua:78933 Serial 588
Permanent link to this record
 

 
Author Bafekry, A.; Akgenc, B.; Ghergherehchi, M.; Peeters, F.M.
Title Strain and electric field tuning of semi-metallic character WCrCO₂ MXenes with dual narrow band gap Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue 35 Pages (down) 355504-355508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent successful synthesis of double-M carbides, we investigate structural and electronic properties of WCrC and WCrCO2 monolayers and the effects of biaxial and out-of-plane strain and electric field using density functional theory. WCrC and WCrCO2 monolayers are found to be dynamically stable. WCrC is metallic and WCrCO2 display semi-metallic character with narrow band gap, which can be controlled by strain engineering and electric field. WCrCO2 monolayer exhibits a dual band gap which is preserved in the presence of an electric field. The band gap of WCrCO2 monolayer increases under uniaxial strain while it becomes metallic under tensile strain, resulting in an exotic 2D double semi-metallic behavior. Our results demonstrate that WCrCO2 is a new platform for the study of novel physical properties in two-dimensional Dirac materials and which may provide new opportunities to realize high-speed low-dissipation devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539375800001 Publication Date 2020-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 37 Open Access
Notes ; This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). In addition, this work was supported by the Flemish Science Foundation (FW0-Vl). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:169756 Serial 6616
Permanent link to this record
 

 
Author Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A.
Title CF4 decomposition in a low-pressure ICP : influence of applied power and O2 content Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 35 Pages (down) 355205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper focuses on the investigation of CF4 decomposition in a low-pressure inductively coupled plasma by means of a global model. The influence of O2 on the CF4 decomposition process is studied for conditions used in semiconductor manufacturing processes. The model is applied for different powers and O2 contents ranging between 2% and 98% in the CF4/O2 gas mixture. The model includes the reaction mechanisms in the gas phase coupled with the surface reactions and sticking probabilities of the species at the walls. The calculation results are first compared with experimental results from the literature (for the electron density, temperature and F atom density) at a specific power, in the entire range of CF4/O2 gas mixture ratios, and the obtained agreements indicate the validity of the model. The main products of the gas mixture, obtained from this model, include CO, CO2 and COF2 together with a low fraction of F2. The most effective reactions for the formation and loss of the various species in this process are also determined in detail. Decomposition of CF4 produces mostly CF3 and F radicals. These radicals also contribute to the backward reactions, forming again CF4. This study reveals that the maximum decomposition efficiency of CF4 is achieved at a CF4/O2 ratio equal to 1, at the applied power of 300 W.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000341353800017 Publication Date 2014-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 8 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:118327 Serial 3521
Permanent link to this record
 

 
Author Woo, S.Y.; Gauquelin, N.; Nguyen, H.P.T.; Mi, Z.; Botton, G.A.
Title Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy Type A1 Journal article
Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 26 Issue 26 Pages (down) 344002
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interplay between strain and composition is at the basis of heterostructure design to engineer new properties. The influence of the strain distribution on the incorporation of indium during the formation of multiple InGaN/GaN quantum dots (QDs) in nanowire (NW) heterostructures has been investigated, using the combined techniques of geometric phase analysis of atomic-resolution images and quantitative elemental mapping from core-loss electron energy-loss spectroscopy within scanning transmission electron microscopy. The variation in In-content between successive QDs within individual NWs shows a dependence on the magnitude of compressive strain along the growth direction within the underlying GaN barrier layer, which affects the incorporation of In-atoms to minimize the local effective strain energy. Observations suggest that the interfacial misfit between InGaN/GaN within the embedded QDs is mitigated by strain partitioning into both materials, and results in normal stresses inflicted by the presence of the surrounding GaN shell. These experimental measurements are linked to the local piezoelectric polarization fields for individual QDs, and are discussed in terms of the photoluminescence from an ensemble of NWs.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000359079500003 Publication Date 2015-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Approved Most recent IF: 3.44; 2015 IF: 3.821
Call Number UA @ lucian @ c:irua:136278 Serial 4504
Permanent link to this record
 

 
Author Moro, G.; Foumthuim, C.J.D.; Spinaci, M.; Martini, E.; Cimino, D.; Balliana, E.; Lieberzeit, P.; Romano, F.; Giacometti, A.; Campos, R.; De Wael, K.; Moretto, L.M.
Title How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures : an electrochemical and computational study Type A1 Journal article
Year 2022 Publication Analytica chimica acta Abbreviated Journal
Volume 1204 Issue Pages (down) 339740-12
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltam-metric techniques. The experimental data interpretation was supported by molecular dynamics simu-lations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000789493000010 Publication Date 2022-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved no
Call Number UA @ admin @ c:irua:188658 Serial 8880
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Sleegers, N.; Cánovas, R.; Debruyne, G.; De Wael, K.
Title Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry Type A1 Journal article
Year 2022 Publication Analytica chimica acta Abbreviated Journal
Volume 1206 Issue Pages (down) 339732
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The high toxicity, endocrine-disrupting effects and low (bio)degradability commonly attributed to phenolic compounds have promoted their recognition as priority toxic pollutants. For this reason, the monitoring of these compounds in industrial, domestic and agricultural streams is crucial to prevent and decrease their toxicity in our daily life. To confront this relevant environmental issue, we propose the use of a combi-electrosensor which combines singlet oxygen (1O2)-based photoelectrochemistry (PEC) with square wave voltammetry (SWV). The high sensitivity of the PEC sensor (being a faster alternative for traditional COD measurements) ensures the detection of nmol L−1 levels of phenolic compounds while the SWV measurements (being faster than the color test kits) allow the differentiation between phenolic compounds. Herein, we report on the development of such a combi-electrosensor for the sensitive and selective detection of phenol (PHOH) in the presence of related phenolic compounds such as hydroquinone (HQ), bisphenol A (BPA), resorcinol (RC) and catechol (CC). The PEC sensor was able to determine the concentration of PHOH in spiked river samples containing only PHOH with a recovery between 96% and 111%. The SWV measurements elucidated the presence of PHOH, HQ and CC in the spiked samples containing multiple phenol compounds. Finally, the practicality of the combi-electrosensor set-up with a dual SPE containing two working electrodes and shared reference and counter electrodes was demonstrated. As a result, the combination of the two techniques is a powerful and valuable tool in the analysis of phenolic samples, since each technique improves the general performance by overcoming the inherent drawbacks that they display independently.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000793070200016 Publication Date 2022-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187499 Serial 8848
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M.
Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages (down) 335601
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000383780500012 Publication Date 2016-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 2 Open Access
Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:137155 Serial 4363
Permanent link to this record
 

 
Author Varley, J.B.; Peelaers, H.; Janotti, A.; van de Walle, C.G.
Title Hydrogenated cation vacancies in semiconducting oxides Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 33 Pages (down) 334212,1-334212,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations we have studied the electronic and structural properties of cation vacancies and their complexes with hydrogen impurities in SnO2, In2O3 and β-Ga2O3. We find that cation vacancies have high formation energies in SnO2 and In2O3 even in the most favorable conditions. Their formation energies are significantly lower in β-Ga2O3. Cation vacancies, which are compensating acceptors, strongly interact with H impurities resulting in complexes with low formation energies and large binding energies, stable up to temperatures over 730 °C. Our results indicate that hydrogen has beneficial effects on the conductivity of transparent conducting oxides: it increases the carrier concentration by acting as a donor in the form of isolated interstitials, and by passivating compensating acceptors such as cation vacancies; in addition, it potentially enhances carrier mobility by reducing the charge of negatively charged scattering centers. We have also computed vibrational frequencies associated with the isolated and complexed hydrogen, to aid in the microscopic identification of centers observed by vibrational spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000294060600014 Publication Date 2011-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 125 Open Access
Notes ; We gratefully acknowledge useful discussions with M D Mc-Cluskey, O Bierwagen and J Speck. The work was supported by the NSF MRSEC Program (DMR05-20415), the Flemish Science Foundation (FWO-VI), the Belgian American Educational Foundation, and by Saint-Gobain Research, and made use of computing facilities at CNSI (NSF grant No. CHE-0321368), TeraGrid and TACC (NSF grant No. DMR070072N), and NERSC (DOE Office of Science Contract No. DE-AC02-05CH11231). ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:92415 Serial 1534
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B.
Title Charge transport in magnetic topological ultra-thin films : the effect of structural inversion asymmetry Type A1 Journal article
Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 32 Pages (down) 325702
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the effect of structural inversion asymmetry, induced by the presence of substrates or by external electric fields, on charge transport in magnetic topological ultra-thin films. We consider general orientations of the magnetic impurities. Our results are based on the Boltzmann formalism along with a modified relaxation time scheme. We show that the structural inversion asymmetry enhances the charge transport anisotropy induced by the magnetic impurities and when only one conduction subband contributes to the charge transport a dissipationless charge current is accessible. We demonstrate how a substrate or gate voltage can control the effect of the magnetic impurities on the charge transport, and how this depends on the orientation of the magnetic impurities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000666698000001 Publication Date 2021-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:179647 Serial 6974
Permanent link to this record
 

 
Author Krsmanovic, R.; Morozov, V.A.; Lebedev, O.I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G.
Title Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis Type A1 Journal article
Year 2007 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 18 Issue 32 Pages (down) 325604-325609
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)- doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia $(3) over bar $d) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd(3-x)Ln(x)Ga(5)O(12), x approximate to 0.3 ( Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+ -doped nanocrystalline GGG samples were measured and analysed.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000248231300010 Publication Date 2007-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 33 Open Access
Notes Iap5-01 Approved Most recent IF: 3.44; 2007 IF: 3.310
Call Number UA @ lucian @ c:irua:104042 Serial 3195
Permanent link to this record
 

 
Author Bekaert, J.; Bringmans, L.; Milošević, M.V.
Title Ginzburg-Landau surface energy of multiband superconductors : derivation and application to selected systems Type A1 Journal article
Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 35 Issue 32 Pages (down) 325602-325610
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We determine the energy of an interface between a multiband superconducting and a normal half-space, in presence of an applied magnetic field, based on a multiband Ginzburg-Landau (GL) approach. We obtain that the multiband surface energy is fully determined by the critical temperature, electronic densities of states, and superconducting gap functions associated with the different band condensates. This furthermore yields an expression for the thermodynamic critical magnetic field, in presence of an arbitrary number of contributing bands. Subsequently, we investigate the sign of the surface energy as a function of material parameters, through numerical solution of the GL equations. Here, we consider two distinct cases: (i) standard multiband superconductors with attractive interactions, and (ii) a three-band superconductor with a chiral ground state with phase frustration, arising from repulsive interband interactions. Furthermore, we apply this approach to several prime examples of multiband superconductors, such as metallic hydrogen and MgB2, based on microscopic parameters obtained from first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986281900001 Publication Date 2023-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
Call Number UA @ admin @ c:irua:196664 Serial 8875
Permanent link to this record
 

 
Author Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; Graves, D.B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I.D.; Kortshagen, U.; Kushner, M.J.; Mason, N.J.; Mazouffre, S.; Thagard, S.M.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A.B.; Niemira, B.A.; Oehrlein, G.S.; Petrovic, Z.L.; Pitchford, L.C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M.M.; van de Sanden, M.C.M.; Vardelle, A.
Title The 2017 Plasma Roadmap: Low temperature plasma science and technology Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 50 Pages (down) 323001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012

consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405553800001 Publication Date 2017-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 246 Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @ c:irua:144626 Serial 4629
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Graphene in inhomogeneous magnetic fields : bound, quasi-bound and scattering states Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 31 Pages (down) 315301,1-315301,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000293008900002 Publication Date 2011-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 38 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE, the Canadian NSERC grant no. OGP0121756 and the Belgian Science Policy (IAP). We acknowledge discussions and correspondence with Professor A Matulis. ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:91176 Serial 1372
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system : the effect of processing parameters Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 31 Pages (down) 315203-315203,15
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A parameter study is carried out for an inductively coupled plasma used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs), by means of the Hybrid Plasma Equipment Model. The influence of processing parameters including gas ratio for four different gas mixtures typically used for CNT/CNF growth (i.e. CH4/H2, CH4/NH3, C2H2/H2 and C2H2/NH3), inductively coupled plasma (ICP) power (501000 W), operating pressure (10 mTorr1 Torr), bias power (01000 W) and temperature of the substrate (01000 °C) on the plasma chemistry is investigated and the optimized conditions for CNT/CNF growth are analysed. Summarized, our calculations suggest that a lower fraction of hydrocarbon gases (CH4 or C2H2, i.e. below 20%) and hence a higher fraction of etchant gases (H2 or NH3) in the gas mixture result in more 'clean' conditions for controlled CNT/CNF growth. The same applies to a higher ICP power, a moderate ICP gas pressure above 100 mTorr (at least for single-walled carbon nanotubes), a high bias power (for aligned CNTs) and an intermediate substrate temperature.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000280275200007 Publication Date 2010-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:88365 Serial 1724
Permanent link to this record
 

 
Author Schulze, A.; Hantschel, T.; Dathe, A.; Eyben, P.; Ke, X.; Vandervorst, W.
Title Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 23 Issue 30 Pages (down) 305707
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000306333500029 Publication Date 2012-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 29 Open Access
Notes Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:100750 Serial 895
Permanent link to this record