|   | 
Details
   web
Records
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M.
Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages (up) 1245-1257
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.
Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369356800031 Publication Date 2016-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857
Call Number c:irua:132247 Serial 4073
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M.
Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume 2 Issue 9 Pages (up) 1246-1250
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571390700022 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access OpenAccess
Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:171980 Serial 6439
Permanent link to this record
 

 
Author Geuchies, J.J.; van Overbeek, C.; Evers, W.H.; Goris, B.; de Backer, A.; Gantapara, A.P.; Rabouw, F.T.; Hilhorst, J.; Peters, J.L.; Konovalov, O.; Petukhov, A.V.; Dijkstra, M.; Siebbeles, L.D.A.; van Aert, S.; Bals, S.; Vanmaekelbergh, D.
Title In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals Type A1 Journal article
Year 2016 Publication Nature materials Abbreviated Journal Nat Mater
Volume 15 Issue 15 Pages (up) 1248-1254
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.
Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000389104400011 Publication Date 2016-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 182 Open Access OpenAccess
Notes This research is part of the programme ‘Designing Dirac Carriers in semiconductor honeycomb superlattices (DDC13),’ which is supported by the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Research Council (NWO). J.J.G. acknowledges funding from the Debye and ESRF Graduate Programs. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915 G.037413 and funding of postdoctoral grants to B.G. and A.d.B). S.B. acknowledges the European Research Council, ERC grant No 335078—Colouratom. The authors gratefully acknowledge I. Swart and M. van Huis for fruitful discussions. We acknowledge funding from NWO-CW TOPPUNT ‘Superficial Superstructures’. The X-ray scattering measurements were performed at the ID10 beamline at ESRF under proposal numbers SC-4125 and SC-3786. The authors thank G. L. Destri and F. Zontone for their support during the experiments.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 39.737
Call Number EMAT @ emat @ c:irua:136165 Serial 4289
Permanent link to this record
 

 
Author Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N., V
Title Transforming solid-state precipitates via excess vacancies Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages (up) 1248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Many phase transformations associated with solid-state precipitation look structurally simple, yet, inexplicably, take place with great difficulty. A classic case of difficult phase transformations is the nucleation of strengthening precipitates in high-strength lightweight aluminium alloys. Here, using a combination of atomic-scale imaging, simulations and classical nucleation theory calculations, we investigate the nucleation of the strengthening phase theta' onto a template structure in the aluminium-copper alloy system. We show that this transformation can be promoted in samples exhibiting at least one nanoscale dimension, with extremely high nucleation rates for the strengthening phase as well as for an unexpected phase. This template-directed solid-state nucleation pathway is enabled by the large influx of surface vacancies that results from heating a nanoscale solid. Template-directed nucleation is replicated in a bulk alloy as well as under electron irradiation, implying that this difficult transformation can be facilitated under the general condition of sustained excess vacancy concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549162600025 Publication Date 2020-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 5 Open Access OpenAccess
Notes ; The authors are indebted to Matthew Weyland for his expert advice on aberrationcorrected scanning transmission electron microscopy. L.B. would like to acknowledge initial discussions with B.C. Muddle and J.F. Nie many years ago regarding the possible thermodynamic role of vacancies in solid-state precipitation. The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. The authors thank Flame Burgmann, Dougal McCulloch and Edwin Mayes for access to and assistance at the Microscopy and Microanalysis Facility at RMIT University. L.B. and N.M. acknowledge the financial support of the Australian Research Council (DP150100558). Authors also gratefully acknowledge the computational support from MonARCH, MASSIVE and the National Computing Infrastructure and Pawsey Supercomputing Centre. ZZ and YZ are thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship. Z.Z. is grateful for a Monash Centre for Electron Microscopy Postgraduate Scholarship. The authors are grateful to Anita Hill for advice. ; Approved Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:170797 Serial 6635
Permanent link to this record
 

 
Author Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J.
Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
Year 2014 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
Volume 25 Issue 4 Pages (up) 1254-1261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Zeist Editor
Language Wos 000341871700015 Publication Date 2014-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.659 Times cited 10 Open Access
Notes Approved Most recent IF: 2.659; 2014 IF: 2.638
Call Number UA @ lucian @ c:irua:119896 Serial 1977
Permanent link to this record
 

 
Author Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M.
Title Standard Practices of Reticular Chemistry Type A1 Journal article
Year 2020 Publication Acs Central Science Abbreviated Journal Acs Central Sci
Volume 6 Issue 8 Pages (up) 1255-1273
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Since 1995 when the first of metal−organic frameworks was crystallized with the strong bond approach, where metal ions are joined by charged organic linkers exemplified by carboxylates, followed by proof of their porosity in 1998 and ultrahigh porosity in 1999, a revolution in the development of their chemistry has ensued. This is being reinforced by the discovery of two- and three-dimensional covalent organic frameworks in 2005 and 2007. Currently, the chemistry of such porous, crystalline frameworks is collectively referred to as reticular chemistry, which is being practiced in over 100 countries. The involvement of researchers from various backgrounds and fields, and the vast scope of this chemistry and its societal applications, necessitate articulating the “Standard Practices of Reticular Chemistry”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566668400005 Publication Date 2020-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2374-7943 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 18.2 Times cited Open Access OpenAccess
Notes S.C. acknowledges the Research Foundation Flanders (FWO) for supporting his research (Project 12ZV120N). Approved Most recent IF: 18.2; 2020 IF: 7.481
Call Number EMAT @ emat @c:irua:172057 Serial 6423
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Verbeeck, J.; Van Tendeloo, G.
Title Exploring different inelastic projection mechanisms for electron tomography Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 8 Pages (up) 1262-1267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADFSTEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100039 Publication Date 2011-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 21 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91260UA @ admin @ c:irua:91260 Serial 1151
Permanent link to this record
 

 
Author Vanhumbeeck, J.-F.; Tian, H.; Schryvers, D.; Proost, J.
Title Stress-assisted crystallisation in anodic titania Type A1 Journal article
Year 2011 Publication Corrosion science Abbreviated Journal Corros Sci
Volume 53 Issue 4 Pages (up) 1269-1277
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000288972000016 Publication Date 2010-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-938X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 5.245; 2011 IF: 3.734
Call Number UA @ lucian @ c:irua:88385 Serial 3177
Permanent link to this record
 

 
Author Felten, A.; Ghijsen, J.; Pireaux, J.-J.; Whelan, C.M.; Liang, D.; Van Tendeloo, G.; Bittencourt, C.
Title Photoemission study of CF4 rf-plasma treated multi-wall carbon nanotubes Type A1 Journal article
Year 2008 Publication Carbon Abbreviated Journal Carbon
Volume 46 Issue 10 Pages (up) 1271-1275
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 rf-plasma. X-ray photoelectron spectroscopy analysis shows that the treatment effectively grafts fluorine atoms onto the MWCNTs. The fluorine atomic concentration and the nature of the CF bond (semi-ionic or covalent) can be tuned by varying the exposure time. Ultraviolet photoelectron spectroscopy analysis confirms that the valence electronic states are altered by the grafting of fluorine atoms. Characterization with high-resolution transmission electron microscopy reveals that while the plasma treatment does not induce significant etching impact on the CNT-surface, it does increase the number of active sites for gold cluster formation.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000258987500001 Publication Date 2008-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 21 Open Access
Notes Approved Most recent IF: 6.337; 2008 IF: 4.373
Call Number UA @ lucian @ c:irua:76481 Serial 2612
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D.; Vermeulen, W.; Richard, O.; Potapov, P.
Title Electron microscopy investigation of ternary \gamma-brass-type precipitation in a Ni39.6Mn47.5Ti12.9 alloy Type A1 Journal article
Year 1999 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 79 Issue 6 Pages (up) 1279-1294
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Homogenized Ni39.6Mn47.5T12.9 material was investigated by different electron microscopy techniques. Apart from the martensite precursor distortions typical for B2 phase alloys undergoing a thermoelastic martensitic transformation upon cooling, coherent dodecahedron-shaped precipitates with sizes between 20 and 100 nm and faceted by lozenge shapes of {110}-type planes are observed. Selected-area and microdiffraction patterns reveal an overall unit cell with a size of 3 x 3 x 3 units of the bcc lattice of the matrix and a body-centred symmetry without screw axes. Finally a ternary gamma-brass-type atomic structure of space group 14(3) over bar m is suggested for these precipitates in accordance with the obtained symmetry constraints, the energy-dispersive X-ray measurements and high-resolution transmission electron microscopy images. This is the first time this type of structure is found in an alloy completely consisting of transition-metal elements.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000080687900002 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104297 Serial 956
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D.; Vermeulen, W.; Richard, O.; Potapov, P.
Title EM investigation of precursors and precipitation in a Ni39.6Mn47.5Ti12.9 alloy Type A1 Journal article
Year 1999 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 79 Issue Pages (up) 1279-1294
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000080687900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29378 Serial 1029
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title FIB/SEM applied to quantitative 3D analysis of precipitates in Ni-Ti Type A1 Journal article
Year 2011 Publication Diffusion and defect data : solid state data : part B : solid state phenomena Abbreviated Journal
Volume 172/174 Issue Pages (up) 1284-1289
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ni4Ti3 precipitates with a heterogeneous distribution growing in a polycrystalline Ni50.8Ti49.2 alloy have been investigated in a Dual-Beam FIB/SEM system. The volume ratio, mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured or calculated. The morphology of the precipitates was classified according to the Zingg scheme. The multistage martensitic transformation occurring in these kinds of samples is interpreted in view of the data of this heterogeneous microstructure of matrix and precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Vaduz Editor
Language Wos 000303359700199 Publication Date 2011-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-9779; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:90152 Serial 1188
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S.
Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 6 Issue 6 Pages (up) 1287-1297
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355908400001 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.127 Times cited 7 Open Access
Notes 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670
Call Number c:irua:126431 Serial 1420
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.
Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 2 Pages (up) 1288
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330543600051 Publication Date 2014-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 1 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:115730 Serial 2874
Permanent link to this record
 

 
Author Zhang, H.; Jin, Q.; Hu, T.; Liu, X.; Zhang, Z.; Hu, C.; Zhou, Y.; Han, Y.; Wang, X.
Title Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides Type A1 Journal article
Year 2023 Publication Journal of Advanced Ceramics Abbreviated Journal
Volume 12 Issue 6 Pages (up) 1288-1297
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin boundaries have been exploited to stabilize ultrafine grains and improve mechanical properties of nanomaterials. The production of the twin boundaries and nanotwins is however prohibitively challenging in carbide ceramics. Using a scanning transmission electron microscope as a unique platform for atomic-scale structure engineering, we demonstrate that twin platelets could be produced in carbides by engineering antisite defects. The antisite defects at metal sites in various layered ternary carbides are collectively and controllably generated, and the metal elements are homogenized by electron irradiation, which transforms a twin-like lamellae into nanotwin platelets. Accompanying chemical homogenization, alpha-Ti3AlC2 transforms to unconventional beta-Ti3AlC2. The chemical homogeneity and the width of the twin platelets can be tuned by dose and energy of bombarding electrons. Chemically homogenized nanotwins can boost hardness by similar to 45%. Our results provide a new way to produce ultrathin (< 5 nm) nanotwin platelets in scientifically and technologically important carbide materials and showcase feasibility of defect engineering by an angstrom-sized electron probe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001004930200012 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2226-4108; 2227-8508 ISBN Additional Links UA library record; WoS full record
Impact Factor 16.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.9; 2023 IF: 1.198
Call Number UA @ admin @ c:irua:197470 Serial 8860
Permanent link to this record
 

 
Author Panin, R.V.; Khasanova, N.R.; Bougerol, C.; Schnelle, W.; Van Tendeloo, G.; Antipov, E.V.
Title Ordering of Pd2+ and Pd4+ in the mixed-valent palladate KPd2O3 Type A1 Journal article
Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue 4 Pages (up) 1295-1297
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new potassium palladate KPd2O3 was synthesized by the reaction of KO2 and PdO at elevated oxygen pressure. Its crystal structure was solved from powder X-ray diffraction data in the space group Rm (a = 6.0730(1) Å, c = 18.7770(7) Å, and Z = 6). KPd2O3 represents a new structure type, consisting of an alternating sequence of K+ and Pd2O3− layers with ordered Pd2+ and Pd4+ ions. The presence of palladium ions in di- and tetravalent low-spin states was confirmed by magnetic susceptibility measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000274240700009 Publication Date 2010-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 9 Open Access
Notes Iap Iv Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:80990 Serial 2507
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Lee, J.H.; Piamonteze, C.; Spreitzer, M.; Jannis, D.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Spatially controlled octahedral rotations and metal-insulator transitions in nickelate superlattices Type A1 Journal article
Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 21 Issue 3 Pages (up) 1295-1302
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO3/SrTiO3 superlattices by controlling the NdNiO3 layer thickness, n in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at n = 8 to a uniform nontilt pattern at n = 4, accompanied by a drastically weakened insulating ground state. Upon further reducing n the predominant dimensionality effect continuously raises the MIT temperature, while leaving the antiferromagnetic transition temperature unaltered down to n = 2. Remarkably, the MIT can be enhanced by imposing a sufficiently large strain even with strongly suppressed octahedral rotations. Our results demonstrate the relevance for the control of oxide functionalities at reduced dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619638600014 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 19 Open Access OpenAccess
Notes This work is supported by the international M-ERA.NET project SIOX (project 4288). J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.S. acknowledges funding from Slovenian Research Agency (Grants J2-9237 and P2-0091). R.J.G. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. This work received support from the ERC CoG MINT (No. 615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in The Netherlands. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823717 -ESTEEM3. Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:176753 Serial 6736
Permanent link to this record
 

 
Author Burgin, J.; Langot, P.; Arbouet, A.; Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Vallee, F.; Mlayah, A.; Rossell, M.D.; Van Tendeloo, G.
Title Acoustic vibration modes and electron-lattice coupling in self-assembled silver nanocolumns Type A1 Journal article
Year 2008 Publication Nano letters Abbreviated Journal Nano Lett
Volume 8 Issue 5 Pages (up) 1296-1302
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000255906400006 Publication Date 2008-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 30 Open Access
Notes Approved Most recent IF: 12.712; 2008 IF: 10.371
Call Number UA @ lucian @ c:irua:69135 Serial 53
Permanent link to this record
 

 
Author Daems, N.; De Mot, B.; Choukroun, D.; Van Daele, K.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T.
Title Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzer Type A1 Journal article
Year 2019 Publication Sustainable energy & fuels Abbreviated Journal
Volume 4 Issue 4 Pages (up) 1296-1311
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nickel-containing N-doped carbons were synthesized for the electrochemical reduction of CO2 to CO, which is a promising approach to reduce the atmospheric CO2 levels and its negative impact on the environment. Unfortunately, poor performance (activity, selectivity and/or stability) is still a major hurdle for the economical implementation of this type of materials. The electrocatalysts were prepared through an easily up-scalable and easily tunable method based on the pyrolysis of Ni-containing N-doped carbons. Ni–N–AC–B1 synthesized with a high relative amount of nitrogen and nickel with respect to carbon, was identified as the most promising candidate for this reaction based on its partial CO current density (4.2 mA cm−2), its overpotential (0.57 V) and its faradaic efficiency to CO (>99%). This results in unprecedented values for the current density per g active sites (690 A g−1 active sites). Combined with its decent stability and its high performance in an actual electrolyzer setup, this makes it a promising candidate for the electrochemical reduction of CO2 to CO on a larger scale. Finally, the evaluation of this kind of material in a flow-cell setup has been limited and to the best of our knowledge never included an evaluation of several crucial parameters (e.g. electrolyte type, anode composition and membrane type) and is an essential investigation in the move towards up-scaling and ultimately industrial application of this technique. This study resulted in an optimal cell configuration, consisting of Pt as an anode, Fumatech® as the membrane and 1 M KHCO3 and 2 M KOH as catholyte and anolyte, respectively. In conclusion, this research offers a unique combination of electrocatalyst development and reactor optimization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518690900030 Publication Date 2019-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 14 Open Access OpenAccess
Notes ; The authors acknowledge sponsoring from the research foundation of Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). J. Hereijgers was supported through a postdoctoral fellowship (28761) of the Research Foundation Flanders (FWO). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-.nanced by the European Fund for Regional Development in the frame of subsidiary contract nr 2S03-019. This work was further performed in the framework of the Catalisti cluster SBO project CO2PERATE (“All renewable CCU based on formic acid integrated in an industrial microgrid”), with the.nancial support of VLAIO (Flemish Agency for Innovation and Entrepreneurship). This project.nally received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). We thank Karen Leyssens for helping with the N<INF>2</INF> physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. ; sygma Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165482 Serial 6311
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages (up) 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H.W.
Title Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel Type A1 Journal article
Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 60 Issue 3 Pages (up) 1311-1321
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by deforming the samples to different strain levels up to about 20%. A comparison of the XRD and EBSD results revealed that the retained austenite grains at the surface have a stronger tendency to transform than the austenite grains in the bulk of the material. The deformation-induced changes of individual austenite grains before and after straining were monitored with EBSD. Three different types of austenite grains can be distinguished that have different transformation behaviors: austenite grains at the grain boundaries between ferrite grains, twinned austenite grains, and embedded austenite grains that are completely surrounded by a single ferrite grain. It was found that twinned austenite grains and the austenite grains present at the grain boundaries between larger ferrite grains typically transform first, i.e. are less stable, in contrast to austenite grains that are completely embedded in a larger ferrite grain. In the latter case, straining leads to rotations of the harder austenite grain within the softer ferrite matrix before the austenite transforms into martensite. The analysis suggests that austenite grain rotation behavior is also a significant factor contributing to enhancement of the ductility. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301157900054 Publication Date 2011-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 80 Open Access
Notes Approved Most recent IF: 5.301; 2012 IF: 3.941
Call Number UA @ lucian @ c:irua:97210 Serial 630
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.
Title sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques Type A1 Journal article
Year 2005 Publication Carbon Abbreviated Journal Carbon
Volume 43 Issue 6 Pages (up) 1311-1316
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000228676400022 Publication Date 2005-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 70 Open Access
Notes Approved Most recent IF: 6.337; 2005 IF: 3.419
Call Number UA @ lucian @ c:irua:51762 Serial 3558
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K.
Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun
Volume 8 Issue 3 Pages (up) 1311-1320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448887900089 Publication Date 2018-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.01 Times cited 1 Open Access
Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01
Call Number UA @ admin @ c:irua:155521 Serial 5364
Permanent link to this record
 

 
Author Esken, D.; Zhang, X.; Lebedev, O.I.; Schröder, F.; Fischer, R.A.
Title Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metalorganic palladium precursors for loading with Pd nanoparticles Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 9 Pages (up) 1314-1319
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The limitations of the loading of the porous metalorganic framework [Zn4O(bdc)3] (bdc = benzene-1,4-dicarboxylate; MOF-5 or IRMOF-1) with Pd nanoparticles was investigated. First, the volatile organometallic precursor [Pd(5-C5H5)(3-C3H5)] was employed to get the inclusion compound [Pd(5-C5H5)(3-C3H5)]x@MOF-5 via gas-phase infiltration at 10-3 mbar. A loading of four molecules of [Pd(5-C5H5)(3-C3H5)] per formula unit of MOF-5 (x = 4) can be reached (35 wt.% Pd). Second, the metalorganic precursor [Pd(acac)2] (acac = 2,4-pentanedionate) was used and the inclusion materials [Pd(acac)2]x@MOF-5 of different Pd loadings were obtained by incipient wetness infiltration. However, the maximum loading was lower as compared with the former case with about two precursor molecules per formula unit of MOF-5. Both loading routes are suitable for the synthesis of Pd nanoparticles inside the porous host matrix. Homogeneously distributed nanoparticles with diameter of 2.4(±0.2) nm can be achieved by photolysis of the inclusion compounds [Pd(5-C5H5)(3-C3H5)]x@MOF-5 (x 4), while the hydrogenolysis of [Pd(acac)2]x@MOF-5 (x 2) leads to a mixture of small particles inside the network (< 3 nm) and large Pd agglomerates (40 nm) on the outer surface of the MOF-5 specimens. The pure Pdx@MOF-5 materials proved to be stable under hydrogen pressure (2 bar) at 150 °C over many hours. Neither hydrogenation of the bdc linkers nor particle growth was observed. The new composite materials were characterized by 1H/13C-MAS-NMR, powder XRD, ICP-AES, FT-IR, N2 sorption measurements and high resolution TEM. Raising the Pd loading of a representative sample Pd4@MOF-5 (35 wt.% Pd) by using [Pd(5-C5H5)(3-C3H5)] as precursor in a second cycle of gas-phase infiltration and photolysis was accompanied by the collapse of the long-range crystalline order of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000263450300015 Publication Date 2009-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 100 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76318 Serial 2565
Permanent link to this record
 

 
Author Guda, A.A.; Smolentsev, N.; Verbeeck, J.; Kaidashev, E.M.; Zubavichus, Y.; Kravtsova, A.N.; Polozhentsev, O.E.; Soldatov, A.V.
Title X-ray and electron spectroscopy investigation of the coreshell nanowires of ZnO:Mn Type A1 Journal article
Year 2011 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 151 Issue 19 Pages (up) 1314-1317
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnO/ZnO:Mn coreshell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the coreshell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000295492200003 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 12 Open Access
Notes We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY-II for provision of synchrotron radiation at the Russian-German beamline and financial support. This research was supported by the Russian Ministry to education and science (RPN 2.1.1. 5932 grant and RPN 2.1.1.6758 grant). N.S. and A.G. would like to thank the Russian Ministry of Education for providing the fellowships of President of Russian Federation to study abroad. We would like to thank the UGINFO computer center of Southern federal university for providing the computer time. Approved Most recent IF: 1.554; 2011 IF: 1.649
Call Number UA @ lucian @ c:irua:92831 Serial 3925
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Hervieu, M.; Raveau, B.
Title Structure and microstructure of colossal magnetoresistant materials Type A1 Journal article
Year 2004 Publication Reports on progress in physics Abbreviated Journal Rep Prog Phys
Volume 67 Issue Pages (up) 1315-1365
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000223732200001 Publication Date 2004-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885;1361-6633; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 14.311 Times cited 79 Open Access
Notes Iuap P5/01 Approved Most recent IF: 14.311; 2004 IF: 7.842
Call Number UA @ lucian @ c:irua:54867 Serial 3285
Permanent link to this record
 

 
Author Pauwels, B.; Van Tendeloo, G.; Thoelen, C.; van Rhijn, W.; Jacobs, P.A.
Title Structure determination of spherical MCM-41 particles Type A1 Journal article
Year 2001 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 13 Issue 17 Pages (up) 1317-1320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000170921100008 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 91 Open Access
Notes Approved Most recent IF: 19.791; 2001 IF: NA
Call Number UA @ lucian @ c:irua:54809 Serial 3300
Permanent link to this record
 

 
Author Li, Y.; Zhang, X.B.; Tao, X.Y.; Xu, J.M.; Chen, F.; Shen, L.H.; Yang, X.F.; Liu, F.; Van Tendeloo, G.; Geise, H.J.
Title Single phase MgMoO4 as catalyst for the synthesis of bundled multi-wall carbon nanotubes by CVD Type L1 Letter to the editor
Year 2005 Publication Carbon Abbreviated Journal Carbon
Volume 43 Issue 6 Pages (up) 1325-1328
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000228676400026 Publication Date 2005-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 23 Open Access
Notes Iap V-1 Approved Most recent IF: 6.337; 2005 IF: 3.419
Call Number UA @ lucian @ c:irua:59055 Serial 3026
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S.
Title Misfit accommodation of epitaxial La1-xAxMnO3 (A=Ca, Sr) thin films Type A1 Journal article
Year 2001 Publication International journal of inorganic materials Abbreviated Journal Int J Inorg Mater
Volume 3 Issue 8 Pages (up) 1331-1337
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000172877700054 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-6049; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54830 Serial 2087
Permanent link to this record
 

 
Author Amelinckx, S.; Bernaerts, D.; Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J.
Title A structure model and growth mechanism for multishell carbon nanotubes Type A1 Journal article
Year 1995 Publication Science Abbreviated Journal Science
Volume 267 Issue Pages (up) 1334-1338
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1995QK06800041 Publication Date 2006-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 33.611 Times cited 169 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:13309 Serial 3305
Permanent link to this record