|   | 
Details
   web
Records
Author Muller-Caspary, K.; Krause, F.F.; Grieb, T.; Loffler, S.; Schowalter, M.; Béché, A.; Galioit, V.; Marquardt, D.; Zweck, J.; Schattschneider, P.; Verbeeck, J.; Rosenauer, A.
Title Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy Type A1 Journal article
Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 178 Issue 178 Pages 62-80
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10x10 available pixels.
Address Institut fur Festkr perphysik, Universitat Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000403862900009 Publication Date 2016-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 93 Open Access
Notes K.M.-C. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) under contract MU3660/1-1. This work was further supported by the DFG under contract RO2057/4-2 and O2057/11-1. J.V. and A.B. acknowledge funding from the European Research Council (ERC) under the 7th Framework Program (FP7), and ERC Starting Grant No. 278510-VORTEX. Experimental results are obtained on the Qu-Ant-EM microscope partly funded by the Hercules fund from the Flemish government. J.V. also acknowledges funding through a GOA project “Solarpaint” of the University of Antwerp. SL and PS acknowledge financial support by the Austrian Science Fund (FWF) under grants No. I543-N20 and J3732-N27. ECASJO_; Approved Most recent IF: 2.843
Call Number c:irua:134125UA @ admin @ c:irua:134125 Serial 4098
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800006 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 5653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347227700003 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 197 Open Access
Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author Gonnissen, J.; de Backer, A.; den Dekker, A.J.; Martinez, G.T.; Rosenauer, A.; Sijbers, J.; Van Aert, S.
Title Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 6 Pages 063116
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000341188700073 Publication Date 2014-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes FWO (G.0393.11; G.0064.10; and G.0374.13); European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 312483 (ESTEEM2); esteem2_jra2 Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118333 Serial 2482
Permanent link to this record
 

 
Author Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D.
Title A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 141 Issue Pages 22-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000335766600004 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:117650 Serial 1992
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S.
Title The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Micron Abbreviated Journal Micron
Volume 63 Issue Pages 57-63
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338402500011 Publication Date 2014-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 25 Open Access
Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988
Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831
Permanent link to this record
 

 
Author Martinez, G.T.; Rosenauer, A.; de Backer, A.; Verbeeck, J.; Van Aert, S.
Title Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 137 Issue Pages 12-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000331092200003 Publication Date 2013-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 74 Open Access
Notes FWO; FP7; ERC Countatoms; ESTEEM2; esteem2_ta Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:111579UA @ admin @ c:irua:111579 Serial 2749
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; Rosenauer, A.; Van Aert, S.
Title Atom counting in HAADF STEM using a statistical model-based approach : methodology, possibilities, and inherent limitations Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 134 Issue Pages 23-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000324474900005 Publication Date 2013-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 48 Open Access
Notes FWO; Esteem2; FP 2007-2013; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109916 Serial 162
Permanent link to this record
 

 
Author Van Aert, S.; de Backer, A.; Martinez, G.T.; Goris, B.; Bals, S.; Van Tendeloo, G.; Rosenauer, A.
Title Procedure to count atoms with trustworthy single-atom sensitivity Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 6 Pages 064107-6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report a method to reliably count the number of atoms from high-angle annular dark field scanning transmission electron microscopy images. A model-based analysis of the experimental images is used to measure scattering cross sections at the atomic level. The high sensitivity of these measurements in combination with a thorough statistical analysis enables us to count atoms with single-atom sensitivity. The validity of the results is confirmed by means of detailed image simulations. We will show that the method can be applied to nanocrystals of arbitrary shape, size, and atom type without the need for a priori knowledge about the atomic structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315144700006 Publication Date 2013-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 106 Open Access
Notes FWO; 262348 ESMI; 312483 ESTEEM2;246791 COUNTATOMS; Hercules 3; esteem2_jra2 Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:105674 Serial 2718
Permanent link to this record
 

 
Author Rosenauer, A.; Gerthsen, D.; Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Present state of the composition evaluation of ternary semiconductor nanostructures by lattice fringe analysis Type A1 Journal article
Year 2003 Publication Institute of physics conference series Abbreviated Journal
Volume Issue 180 Pages 19-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Semiconductor heterostructures are used for the fabrication of optoelectronic devices. Performance of such devices is governed by their chemical morphology. The composition distribution of quantum wells and dots is influenced by kinetic growth processes which are not understood completely at present. To obtain more information about these effects, methods for composition determination with a spatial resolution at a near atomic scale are necessary. In this paper we focus on the present state of the composition evaluation by the lattice fringe analysis (CELFA) technique and explain the basic ideas, optimum imaging conditions, precision and accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0979-2 ISBN Additional Links (down) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95118 Serial 2710
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Titantah, J.T.; Lamoen, D.
Title Calculation of Debye-Waller temperature factors for GaAs Type A1 Journal article
Year 2008 Publication Springer proceedings in physics Abbreviated Journal
Volume 120 Issue Pages 195-198
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links (down) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:73966 Serial 266
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Effect of temperature on the 002 electron structure factor and its consequence for the quantification of ternary and quaternary III-V crystals Type A1 Journal article
Year 2008 Publication Springer proceedings in physics Abbreviated Journal
Volume 120 Issue Pages 189-194
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links (down) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:73965 Serial 839
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D.
Title First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
Year 2005 Publication Abbreviated Journal
Volume 107 Issue Pages 151-154
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links (down) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72916 Serial 1202
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kruse, P.; Gerthsen, D.
Title Ab initio computation of the mean inner Coulomb potential of technological important semiconductors Type A1 Journal article
Year 2005 Publication Abbreviated Journal
Volume 1007 Issue Pages 233-236
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links (down) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72915 Serial 32
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R.
Title Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
Year 2005 Publication Microscopy of Semiconducting Materials Abbreviated Journal
Volume 107 Issue Pages 303-306
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title SPRINGER PROCEEDINGS IN PHYSICS Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links (down) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72914 Serial 1962
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kruse, P.; Gerthsen, D.
Title Ab initio computation of the mean inner Coulomb potential of wurtzite-type semiconductors and gold Type A1 Journal article
Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 88 Issue 23 Pages Artn 232108
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000238914500031 Publication Date 2006-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:60581 Serial 33
Permanent link to this record
 

 
Author Kruse, P.; Schowalter, M.; Lamoen, D.; Rosenauer, A.; Gerthsen, D.
Title Determination of the mean inner potential in III-V semiconductors, Si and Ge by density functional theory and electron holography Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 2 Pages 105-113
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000234535900005 Publication Date 2005-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 50 Open Access
Notes Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:56143 Serial 678
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D.
Title First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
Year 2005 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 72 Issue 8 Pages 1-10
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract This work provides values of electron scattering 002 structure factors for InxGa1-xAs as a function of the In concentration x=0 to 1. These results allow accurate compositional analysis of pseudomorphically grown InxGa1-xAs/GaAs layers by transmission electron microscopy methods relying on the chemical sensitivity of the (002) beam. The calculations go beyond the limits of the isolated atom approximation, because they take into account charge redistribution effects between atomic sites in the crystal, strain, and static atomic displacements. The computations were performed by the full potential linearized augmented plane-wave method using a generalized gradient approximation for the exchange and correlation part of the potential. The calculations of strained InxGa1-xAs correspond to the strain state in specimens with large, small, and intermediate thickness in the electron beam direction. Additionally, the effect of static atomic displacements is taken into account. All results are listed in a parameterized form. The calculated 002 structure factor vanishes at an In concentration of 16.4%. This value is in a good agreement with previously reported experimental measurements. Hence, our results are a significant improvement with respect to the isolated atom approximation which is conventionally applied in transmission electron microscopy simulations, and which predicts a value of 22.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000231564600106 Publication Date 2005-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:54918 Serial 1201
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R.; Waag, A.
Title Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
Year 2005 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 86 Issue 15 Pages
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000228901600121 Publication Date 2005-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 5 Open Access
Notes Approved Most recent IF: 3.411; 2005 IF: 4.127
Call Number UA @ lucian @ c:irua:54917 Serial 1963
Permanent link to this record
 

 
Author Schowalter, M.; Lamoen, D.; Kruse, P.; Gerthsen, D.; Rosenauer, A.
Title First-principles calculations of the mean inner Coulomb potential for sphalerite type II.VI semiconductors Type A1 Journal article
Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 85 Issue 21 Pages 4938-4940
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000225300600037 Publication Date 2004-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:49657 Serial 1203
Permanent link to this record