|   | 
Details
   web
Records
Author Lukyanchuk, I.; Vinokur, V.M.; Rydh, A.; Xie, R.; Milošević, M.V.; Welp, U.; Zach, M.; Xiao, Z.L.; Crabtree, G.W.; Bending, S.J.; Peeters, F.M.; Kwok, W.K.
Title Rayleigh instability of confined vortex droplets in critical superconductors Type A1 Journal article
Year 2015 Publication Nature physics Abbreviated Journal Nat Phys
Volume 11 Issue 11 Pages 21-25
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Depending on the Ginzburg-Landau parameter kappa, superconductors can either be fully diamagnetic if kappa < 1/root 2 (type I superconductors) or allow magnetic flux to penetrate through Abrikosov vortices if kappa > 1/root 2 (type II superconductors; refs 1,2). At the Bogomolny critical point, kappa = kappa(c) = 1/root 2, a state that is infinitely degenerate with respect to vortex spatial configurations arises(3,4). Despite in-depth investigations of conventional type I and type II superconductors, a thorough understanding of the magnetic behaviour in the near-Bogomolny critical regime at kappa similar to kappa(c) remains lacking. Here we report that in confined systems the critical regime expands over a finite interval of kappa forming a critical superconducting state. We show that in this state, in a sample with dimensions comparable to the vortex core size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh instability(5) on increasing kappa and decays by emitting single vortices. Superconducting vortices realize Nielsen-Olesen singular solutions of the Abelian Higgs model, which is pervasive in phenomena ranging from quantum electrodynamics to cosmology(6-9). Our study of the transient dynamics of Abrikosov-Nielsen-Olesen vortices in systems with boundaries promises access to non-trivial effects in quantum field theory by means of bench-top laboratory experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346831100018 Publication Date 2014-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 20 Open Access
Notes ; We would like to thank N. Nekrasov for illuminating discussions. The work was supported by the US Department of Energy, Office of Science Materials Sciences and Engineering Division (V.M.V., W.K.K., U.W., R.X., M.Z., Z.L.X., G.W.C. and partially I.L. through the Materials Theory Institute), by FP7-IRSES-SIMTECH and ITN-NOTEDEV programs (I.L.), and by the Flemish Science Foundation (FWO-Vlaanderen) (M.V.M. and F.M.P.). ; Approved Most recent IF: 22.806; 2015 IF: 20.147
Call Number c:irua:122791 c:irua:122791 Serial 2815
Permanent link to this record
 

 
Author Colla, M.-S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title Dislocation-mediated relaxation in nanograined columnar ​palladium films revealed by on-chip time-resolved HRTEM testing Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume 6 Issue 6 Pages 5922
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on ​palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as ​palladium membranes for hydrogen applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348742300002 Publication Date 2015-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Iap7/21; Fwo G012012n Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:122045 Serial 731
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M.
Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 4962
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342984800018 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 36 Open Access
Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:121121 Serial 3628
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.;
Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 3252
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332666700010 Publication Date 2014-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 806 Open Access
Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:119247 Serial 2192
Permanent link to this record
 

 
Author Xu, P.; Neek-Amal, M.; Barber, S.D.; Schoelz, J.K.; Ackerman, M.L.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M.
Title Unusual ultra-low-frequency fluctuations in freestanding graphene Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 3720
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Intrinsic ripples in freestanding graphene have been exceedingly difficult to study. Individual ripple geometry was recently imaged using scanning tunnelling microscopy, but these measurements are limited to static configurations. Thermally-activated flexural phonon modes should generate dynamic changes in curvature. Here we show how to track the vertical movement of a one-square-angstrom region of freestanding graphene using scanning tunnelling microscopy, thereby allowing measurement of the out-of-plane time trajectory and fluctuations over long time periods. We also present a model from elasticity theory to explain the very-low-frequency oscillations. Unexpectedly, we sometimes detect a sudden colossal jump, which we interpret as due to mirror buckling. This innovative technique provides a much needed atomic-scale probe for the time-dependent behaviours of intrinsic ripples. The discovery of this novel progenitor represents a fundamental advance in the use of scanning tunnelling microscopy, which together with the application of a thermal load provides a low-frequency nano-resonator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000335223200007 Publication Date 2014-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 62 Open Access
Notes ; This work was financially supported, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Euro-GRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:117201 Serial 3819
Permanent link to this record
 

 
Author Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G.
Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
Year 2014 Publication Nature materials Abbreviated Journal Nat Mater
Volume 13 Issue 3 Pages 216-217
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331945200002 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 5 Open Access
Notes Approved Most recent IF: 39.737; 2014 IF: 36.503
Call Number UA @ lucian @ c:irua:114579 Serial 2270
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J.
Title Magnetic monopole field exposed by electrons Type A1 Journal article
Year 2014 Publication Nature physics Abbreviated Journal Nat Phys
Volume 10 Issue 1 Pages 26-29
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328940100012 Publication Date 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 131 Open Access
Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147
Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885
Permanent link to this record
 

 
Author Zhang, J.; Ke, X.; Gou, G.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.I.; Minor, A.M.; Chu, Y.h.; Van Tendeloo, G.; Ren, X.; Ramesh, R.;
Title A nanoscale shape memory oxide Type A1 Journal article
Year 2013 Publication Nature communications Abbreviated Journal Nat Commun
Volume 4 Issue Pages 2768-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm−3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328023900006 Publication Date 2013-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 67 Open Access
Notes Countatoms Approved Most recent IF: 12.124; 2013 IF: 10.742
Call Number UA @ lucian @ c:irua:111431 Serial 2271
Permanent link to this record
 

 
Author Dubrovinsky, L.; Dubrovinskaia, N.; Prakapenka, V.B.; Abakumov, A.M.
Title Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar Type A1 Journal article
Year 2012 Publication Nature communications Abbreviated Journal Nat Commun
Volume 3 Issue Pages 1163-1167
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Since invention of the diamond anvil cell technique in the late 1950s for studying materials at extreme conditions, the maximum static pressure generated so far at room temperature was reported to be about 400 GPa. Here we show that use of micro-semi-balls made of nanodiamond as second-stage anvils in conventional diamond anvil cells drastically extends the achievable pressure range in static compression experiments to above 600 GPa. Micro-anvils (10-50 mu m in diameter) of superhard nano-diamond (with a grain size below similar to 50 nm) were synthesized in a large volume press using a newly developed technique. In our pilot experiments on rhenium and gold we have studied the equation of state of rhenium at pressures up to 640 GPa and demonstrated the feasibility and crucial necessity of the in situ ultra high-pressure measurements for accurate determination of material properties at extreme conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313514100073 Publication Date 2012-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 150 Open Access
Notes Approved Most recent IF: 12.124; 2012 IF: 10.015
Call Number UA @ lucian @ c:irua:110134 Serial 1563
Permanent link to this record
 

 
Author Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O.I.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Classification and control of the origin of photoluminescence from Si nanocrystals Type A1 Journal article
Year 2008 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume 3 Issue 3 Pages 174-178
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000254743600017 Publication Date 2008-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387;1748-3395; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 426 Open Access
Notes Fwo Approved Most recent IF: 38.986; 2008 IF: 20.571
Call Number UA @ lucian @ c:irua:102630 Serial 373
Permanent link to this record
 

 
Author Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau, C.; Hinterstein, M.; Taulelle, F.; Van Speybroeck, V.; Waroquier, M.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.;
Title Design of zeolite by inverse sigma transformation Type A1 Journal article
Year 2012 Publication Nature materials Abbreviated Journal Nat Mater
Volume 11 Issue 12 Pages 1059-1064
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although the search for new zeolites has traditionally been based on trial and error, more rational methods are now available. The theoretical concept of inverse transformation of a zeolite framework to generate a new structure by removal of a layer of framework atoms and contraction has for the first time been achieved experimentally. The reactivity of framework germanium atoms in strong mineral acid was exploited to selectively remove germanium-containing four-ring units from an UTL type germanosilicate zeolite. Annealing of the leached framework through calcination led to the new all-silica COK-14 zeolite with intersecting 12- and 10-membered ring channel systems. An intermediate stage of this inverse transformation with dislodged germanate four-rings still residing in the pores could be demonstrated. Inverse transformation involving elimination of germanium-containing structural units opens perspectives for the synthesis of many more zeolites.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000311432600025 Publication Date 2012-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 140 Open Access
Notes Fwo Approved Most recent IF: 39.737; 2012 IF: 35.749
Call Number UA @ lucian @ c:irua:101783 Serial 661
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Carbó-Argibay, E.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G.
Title Atomic-scale determination of surface facets in gold nanorods Type A1 Journal article
Year 2012 Publication Nature materials Abbreviated Journal Nat Mater
Volume 11 Issue 11 Pages 930-935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is widely accepted that the physical properties of nanostructures depend on the type of surface facets1, 2. For Au nanorods, the surface facets have a major influence on crucial effects such as reactivity and ligand adsorption and there has been controversy regarding facet indexing3, 4. Aberration-corrected electron microscopy is the ideal technique to study the atomic structure of nanomaterials5, 6. However, these images correspond to two-dimensional (2D) projections of 3D nano-objects, leading to an incomplete characterization. Recently, much progress was achieved in the field of atomic-resolution electron tomography, but it is still far from being a routinely used technique. Here we propose a methodology to measure the 3D atomic structure of free-standing nanoparticles, which we apply to characterize the surface facets of Au nanorods. This methodology is applicable to a broad range of nanocrystals, leading to unique insights concerning the connection between the structure and properties of nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000310434600015 Publication Date 2012-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 261 Open Access
Notes 262348 ESMI; Hercules 3; 24691 COUNTATOMS; 267867 PLASMAQUO Approved Most recent IF: 39.737; 2012 IF: 35.749
Call Number UA @ lucian @ c:irua:101778 Serial 182
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G.
Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
Year 2012 Publication Nature communications Abbreviated Journal Nat Commun
Volume 3 Issue 897 Pages 897
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000306099900024 Publication Date 2012-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 90 Open Access
Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015
Call Number UA @ lucian @ c:irua:100340 Serial 183
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.
Title Corrigendum: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
Year 2005 Publication Nature materials Abbreviated Journal Nat Mater
Volume 4 Issue Pages 104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited Open Access
Notes Approved Most recent IF: 39.737; 2005 IF: 15.941
Call Number UA @ lucian @ c:irua:54856 Serial 530
Permanent link to this record
 

 
Author N. Gauquelin, D. G. Hawthorn, G. A. Sawatzky, R. X. Liang, D. A. Bonn, W. N. Hardy & G.A. Botton
Title Atomic scale real-space mapping of holes in YBa2Cu3O6+δ Type A1 Journal Article
Year 2014 Publication Nature Communications Abbreviated Journal
Volume 5 Issue Pages 4275
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The high-temperature superconductor YBa2Cu3O6+δ consists of two main structural units—a bilayer of CuO2 planes that are central to superconductivity and a CuO2+δ chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000340615100002 Publication Date 2014-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down)
Impact Factor Times cited 22 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4542
Permanent link to this record
 

 
Author Tong, J.; Fu, Y.; Domaretskiy, D.; Della Pia, F.; Dagar, P.; Powell, L.; Bahamon, D.; Huang, S.; Xin, B.; Costa Filho, R.N.; Vega, L.F.; Grigorieva, I.V.; Peeters, F.M.; Michaelides, A.; Lozada-Hidalgo, M.
Title Control of proton transport and hydrogenation in double-gated graphene Type A1 Journal Article
Year 2024 Publication Nature Abbreviated Journal Nature
Volume 630 Issue 8017 Pages 619-624
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriersand various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metalsor chemically functionalizing the lattice. But these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field,<italic>E</italic>, at around 1 V nm<sup>−1</sup>, and charge-carrier density,<italic>n</italic>, at around 1 × 10<sup>14</sup> cm<sup>−2</sup>, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of<italic>E</italic>and<italic>n</italic>, which is a new technique for the study of 2D electrode–electrolyte interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Additional Links (down)
Impact Factor 64.8 Times cited Open Access
Notes This work was supported by UKRI (EP/X017745: M.L.-H; EP/X035891: A.M.), the Directed Research Projects Program of the Research and Innovation Center for Graphene and 2D Materials at Khalifa University (RIC2D-D001: M.L.-H., L.F.V. and D.B.), The Royal Society (URF\R1\201515: M.L.-H.) and the European Research Council (101071937: A.M.). Part of this work was supported by the Flemish Science Foundation (FWO-Vl, G099219N). A.M. acknowledges access to the UK national high-performance computing service (ARCHER2). Approved Most recent IF: 64.8; 2024 IF: 40.137
Call Number CMT @ cmt @ Serial 9247
Permanent link to this record