|   | 
Details
   web
Records
Author Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E.
Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 387 Issue Pages 129607-129609
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001063180200001 Publication Date 2023-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access Not_Open_Access: Available from 21.02.2024
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:199051 Serial 8843
Permanent link to this record
 

 
Author De Micco, V.; Amitrano, C.; Mastroleo, F.; Aronne, G.; Battistelli, A.; Carnero-Diaz, E.; De Pascale, S.; Detrell, G.; Dussap, C.-G.; Ganigué, R.; Jakobsen, Ø.M.; Poulet, L.; Van Houdt, R.; Verseux, C.; Vlaeminck, S.E.; Willaert, R.; Leys, N.
Title Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space Type A1 Journal article
Year 2023 Publication NPJ microgravity Abbreviated Journal
Volume 9 Issue 1 Pages 69-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001093834300001 Publication Date 2023-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2373-8065 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199050 Serial 8916
Permanent link to this record
 

 
Author De Paepe, J.; Garcia Gragera, D.; Arnau Jimenez, C.; Rabaey, K.; Vlaeminck, S.E.; Gòdia, F.
Title Continuous cultivation of microalgae yields high nutrient recovery from nitrified urine with limited supplementation Type A1 Journal article
Year 2023 Publication Journal of environmental management Abbreviated Journal
Volume 345 Issue Pages 118500-118510
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L−1), magnesium (7.9 mg L−1), calcium (12.2 mg L−1), iron (2.0 mg L−1) and EDTA (88.5 mg Na2-EDTA.2H2O L−1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L−1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052880800001 Publication Date 2023-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 8.7 Times cited Open Access Not_Open_Access: Available from 03.02.2024
Notes Approved Most recent IF: 8.7; 2023 IF: 4.01
Call Number UA @ admin @ c:irua:199049 Serial 8844
Permanent link to this record
 

 
Author Perreault, P.; Preuster, P.
Title Editorial hydrogen production storage and use Type Editorial
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 44 Issue Pages 100861-100863
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the pursuit of clean and sustainable energy sources, hydrogen has emerged as a key contender, offering high energy density and the potential to serve as a carbon-neutral fuel. However, one of the major challenges associated with hydrogen is efficient and safe storage and transportation. In this Special Edition, we delve into the exciting developments in the upcoming hydrogen economy, from its sustainable production to chemical hydrogen storage. Some of our reviews focus on particular technologies namely on liquid organic hydrogen carriers (LOHCs) and the utilization of ammonia as a hydrogen carrier.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079651000001 Publication Date 2023-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 9.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:198505 Serial 8853
Permanent link to this record
 

 
Author Saeumel, I.; Ramirez, L.R.; Santolin, J.; Pintado, K.
Title A step to disentangle diversity patterns in Uruguayan grasslands : climatic seasonality, novel land-uses, and landscape context drive diversity of ground flora Type A1 Journal article
Year 2023 Publication Conservation Science and Practice Abbreviated Journal
Volume 5 Issue 9 Pages 1-20
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract South American grasslands contain extraordinary biodiversity and play a central role in the subsistence of regional agroecosystems. In recent decades, afforestation, followed by the soybean planting boom, have led to drastic land-use changes at the expense of grasslands. Impacts on local biodiversity have remained understudied. We explored the taxonomic richness and ss-diversity of plants of ground layer (excluding trees and shrubs) at different land uses, its interplay at regional scale with environmental heterogeneity, and at local scale with novel land cover types and landscape configurations. We conducted correlation, principal component, NDMS, and SDR analysis to explore variation of taxonomic richness, richness difference, replacement, and similarity of ground flora as response to environmental filters and land use change across Uruguay. We surveyed 160 plots distributed in 10 land cover types, that is, closed and open native forests, different grasslands, crops, orchards, and timber plantations. We observed overlaying regional patterns driven by seasonality of temperature and precipitation, and land cover shaping taxonomic richness at local scale. Landscape configuration affects diversity patterns of native ground flora, which seems to be sustained mainly by the “old growth grassland” species pool. Taxonomic richness of native species decreases with an increase of distance to grassland. Crops and grasslands harbor a higher number of native species in the ground flora than native forests and timber plantations. The introduction of exotics is driven mostly by crops or highly modified pastures. Diversity patterns only partially reflect the ecoregion concept. Expanding the perspective from conservation in purely natural ecosystems to measures conserving species richness in human-modified landscapes is a powerful tool against species loss in the Anthropocene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034673500001 Publication Date 2023-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2578-4854 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198300 Serial 8828
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E.
Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 385 Issue Pages 129359-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031586400001 Publication Date 2023-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:198259 Serial 8866
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S.
Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
Year 2023 Publication Sustainability Abbreviated Journal
Volume 15 Issue 13 Pages 10310-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)
Abstract Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001028597300001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9; 2023 IF: 1.789
Call Number UA @ admin @ c:irua:198241 Serial 8839
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.; Niinemets, Ü.; Schrader, J.
Title Leaf functional traits : ecological and evolutionary implications Type ME3 Book as editor
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 185 p.
Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-2-8325-2086-4; 1664-8714 Additional Links (down) UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198002 Serial 8894
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J.
Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-7
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033135400001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 24.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:198001 Serial 8864
Permanent link to this record
 

 
Author Gielis, J.
Title Simon Stevin as a central figure in the development of abstract algebra and generic programming Type A1 Journal article
Year 2023 Publication Symmetry : culture and science Abbreviated Journal
Volume 34 Issue 2 Pages 155-168
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Simon Stevin (1548-1620) is mainly known for the decimal system and his Clootkrans proof. His influence is also profound in infinitesimal calculus, mechanics, and even in abstract algebra and today’s conception of polynomials, algorithms, and generic programming. Here we review his influence as assessed in generic programming. According to Dr. Stepanov, one of the most influential researchers in generic programming, Stevin’s work on polynomials can be regarded as the essence of generic programming: an algorithm from one domain can be applied in another similar domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001068714100003 Publication Date 2023-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access: Available from 08.02.2024
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198000 Serial 8929
Permanent link to this record
 

 
Author Li, Q.; Niklas, K.J.J.; Niinemets, U.; Zhang, L.; Yu, K.; Gielis, J.; Gao, J.; Shi, P.
Title Stomatal shape described by a superellipse in four Magnoliaceae species Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stomata are essential for the exchange of water vapour and atmospheric gases between vascular plants and their external environments. The stomatal geometries of many plants appear to be elliptical. However, prior studies have not tested whether this is a mathematical reality, particularly since many natural shapes that appear to be ellipses are superellipses with greater or smaller edge curvature than predicted for an ellipse. Compared with the ellipse equation, the superellipse equation includes an additional parameter that allows generation of a larger range of shapes. We randomly selected 240 stomata from each of four Magnoliaceae species to test whether the stomatal geometries are superellipses or ellipses. The stomatal geometries for most stomata (943/960) were found to be described better using the superellipse equation. The traditional “elliptical stomata hypothesis” resulted in an underestimation of the area of stomata, whereas the superellipse equation accurately predicted stomatal area. This finding has important implications for the estimation of stomatal area in studies looking at stomatal shape, geometry, and function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001024190300001 Publication Date 2023-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 12.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:197847 Serial 8935
Permanent link to this record
 

 
Author Wang, Y.-T.; Wu, S.-M.; Luo, G.-Q.; Tian, G.; Wang, L.-Y.; Xiao, S.-T.; Wu, J.-X.; Wu, A.; Wu, K.-J.; Lenaerts, S.; Yang, X.-Y.
Title A core-shell confined Pd@TS-1 @meso-SiO2 catalyst and its synergy effect on styrene oxidation Type A1 Journal article
Year 2023 Publication Applied catalysis : A : general Abbreviated Journal
Volume 650 Issue Pages 119016-6
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Dual active sites from acidic zeolite and Pd are not only capable of catalyzing multiple type of reactions, but could also generate unique functions owing to the synergy between metals and acidic sites. However, there are only a few reports on the investigation of the synergy of acid/Pd dual sites in TS-1. Herein, TS-1 confined Pd catalyst with mesoporous silica shell (Pd@TS-1 @meso-SiO2) has been successfully synthesized and its synergy effect contributes to the enhanced conversion rate (19.2%) and selectivity (74.7%) on styrene oxidation. The interaction between Pd and TS-1 has been investigated by EPR and 1H NMR techniques, the experimental measurements show an obvious change in the signal distribution of weakly acidic terminal hydroxyls and hydrogen-bonding silanols. The schematic illustration of selective styrene oxidation in the model of Pd@TS-1 @meso-SiO2 is proposed to clarify the synergistic effect on styrene oxidation between TS-1 and Pd nanoparticles at an atomic-/nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001015700000001 Publication Date 2022-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.5; 2023 IF: 4.339
Call Number UA @ admin @ c:irua:197805 Serial 8826
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G.
Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
Year 2023 Publication Plasmonics Abbreviated Journal
Volume 18 Issue 4 Pages 1449-1465
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985445100001 Publication Date 2023-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1955; 1557-1963 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3; 2023 IF: 2.139
Call Number UA @ admin @ c:irua:197380 Serial 8914
Permanent link to this record
 

 
Author Wittner, N.
Title Improving and characterising solid-state fungal pretreatment by Phanerochaete chrysosporium for sugar production from poplar wood Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 206 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Pretreatment is a critical step in the conversion of lignocellulose into biofuels and biochemicals. During pretreatment, the recalcitrance of lignocellulose is reduced, e.g. by removing lignin, thereby making the carbohydrates more accessible for enzymatic saccharification. Fungal delignification by white-rot fungi is a biotechnological alternative to chemical/physicochemical methods, which is carried out in solid-state fermentation with mild reaction conditions and without the formation of microbial inhibitors. However, fungal pretreatment presents some challenges, such as long pretreatment time, non-selective and low delignification, low enzymatic digestibility and feedstock sterilisation requirement, making its commercial implementation challenging compared to conventional methods. This study investigates the possibility of improving and characterising the solid-state fungal pretreatment of poplar wood by Phanerochaete chrysosporium. The individual and combined effects of MnSO4 and CuSO4 supplements on the delignification of sterilised wood are investigated using response surface methodology to improve the degree and selectivity of fungal delignification. Spore-inoculated solid-state fermentations are carried out for 4 weeks in sterile vented bottles. The mechanism of the concerted action of the metal ions on lignin degradation is then elucidated by relating fungal growth and ligninolytic enzyme activities to lignocellulose degradation as a function of pretreatment time. The optimised metal-supplemented system is then applied to the pretreatment of non-sterilised wood using different inoculation techniques (spores and pre-colonised substrate), nutrients (metal ions with or without glucose and sodium nitrate) and cultivation environments (sterile aerated bottles and open trays). The fermentations are then characterised using infrared spectroscopy, in particular NIR and ATR-FTIR spectroscopy, with the aim of developing rapid lignin quantification methods as an alternative to conventional wet chemical methods. Finally, the feasibility of producing fermentable sugars from sterilised and non-sterilised poplar wood using fungal pretreatment is evaluated through a techno-economic analysis. Supplementing the pretreatment system with 2.01 µmol CuSO4 and 0.77 µmol MnSO4 g-1 wood resulted in 1.9-fold higher lignin degradation, 2.3-fold higher delignification selectivity value and 2.9-fold higher glucose yield. The improved delignification could be explained by the concerted action of Mn2+ and Cu2+ ions, with Mn2+ ions inducing and Cu2+ prolonging manganese peroxidase production responsible for delignification. Fungal pretreatment at non-sterile conditions was obtained using trays in a simple solid-state fermentation set-up without sterile aeration. A 1:3 ratio of pre-colonised and untreated wood was applied for inoculation and only Cu2+, Mn2+ and sodium nitrate as supplements. Remarkably, this technology resulted in a comparably high glucose yield (28.51 ± 0.28%) to the traditional method using sterilised wood, sterile aeration and spores as inoculum, while reducing the amount of wood to be sterilised by 71.2%. Infrared spectroscopy-based methods with high coefficients of determination (R_CV
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:197185 Serial 8883
Permanent link to this record
 

 
Author Van Putte, N.
Title Improving groundwater dynamics : a key factor for successful tidal marsh restoration Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 166 p.
Keywords Doctoral thesis; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere
Abstract Tidal marshes take up and release certain elements from and to the river water. Hence, they act as a filter, improving the estuarine water quality. This filtering function depends on the interaction between the marsh soil and water that infiltrates into the marsh platform at high tide and seeps out of the creek banks at low tide. In the past centuries, many tidal marshes disappeared due to large scale land reclamations, together with their associated ecosystem services. Nowadays, tidal marshes are increasingly restored on formerly embanked agricultural areas to regain these ecosystem services. Here, we studied the effect of historical agricultural land use on the contribution of restored tidal marshes to water quality improvement, and we investigated several solutions to stimulate the water quality improving function in newly restored tidal marshes. In restored tidal marshes, the soil is often compacted due to the historical agricultural land use, leading to a reduced organic matter content and micro- and macroporosity. In this compacted soil, groundwater flow is hindered, leading to a more waterlogged soil and reduced groundwater dynamics in the restored marsh as compared to a natural marsh. The depth of groundwater drainage and the groundwater flow velocity have important implications for the processes that contribute to water quality improvement, e.g. removal of nitrogen, phosphorus retention and silica cycling. Where groundwater drains deeper, i.e. in the vicinity of tidal creeks and in a more porous soil, these processes are promoted. We suggest that, in newly restored tidal marshes, the soil porosity can be increased by amending the soil (e.g. with organic matter), and the distance to the nearest tidal creek can be reduced by creek excavation. Numerical modelling showed that the largest gain in groundwater dynamics and seepage was attained when both measures were applied together. The effect of organic soil amendments on groundwater dynamics and nutrient cycling was further explored in a large scale in situ mesocosm experiment. Where the soil was amended, groundwater drained deeper and nitrogen removal increased. For new tidal marsh restoration projects, we advise to conduct an explorative soil study. When the soil is heavily compacted, design measures, such as creek initiation and organic soil amendments can be applied to jumpstart the contribution to water quality improvement of newly restored tidal marshes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196965 Serial 8884
Permanent link to this record
 

 
Author Shi, P.; Chen, L.; Quinn, B.K.; Yu, K.; Miao, Q.; Guo, X.; Lian, M.; Gielis, J.; Niklas, K.J.
Title A simple way to calculate the volume and surface area of avian eggs Type A1 Journal article
Year 2023 Publication Annals of the New York Academy of Sciences Abbreviated Journal
Volume 1524 Issue 1 Pages 118-131
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Egg geometry can be described using Preston's equation, which has seldom been used to calculate egg volume (V) and surface area (S) to explore S versus V scaling relationships. Herein, we provide an explicit re-expression of Preston's equation (designated as EPE) to calculate V and S, assuming that an egg is a solid of revolution. The side (longitudinal) profiles of 2221 eggs of six avian species were digitized, and the EPE was used to describe each egg profile. The volumes of 486 eggs from two avian species predicted by the EPE were compared with those obtained using water displacement in graduated cylinders. There was no significant difference in V using the two methods, which verified the utility of the EPE and the hypothesis that eggs are solids of revolution. The data also indicated that V is proportional to the product of egg length (L) and maximum width (W) squared. A 2/3-power scaling relationship between S and V for each species was observed, that is, S is proportional to (LW2)(2/3). These results can be extended to describe the shapes of the eggs of other species to study the evolution of avian (and perhaps reptilian) eggs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000975679400001 Publication Date 2023-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2; 2023 IF: 4.706
Call Number UA @ admin @ c:irua:196724 Serial 8827
Permanent link to this record
 

 
Author Perreault, P.; Van Hoecke, L.; Pourfallah, H.; Kummamuru, N.B.; Boruntea, C.-R.; Preuster, P.
Title Critical challenges towards the commercial rollouts of a LOHC-based H2 economy Type A1 Journal article
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 41 Issue Pages 100836-100838
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This short review discusses recent developments related to the storage and release of hydrogen from liquid organic hydrogen carriers (LOHCs). It focusses on three areas of recent literature: the application and development of novel, alternative LOHC systems, process development and process integration in the storage and release of hydrogen from LOHCs, and the electrochemical conversion of LOHCs. For the novel LOHC systems, we briefly focus on reaction enthalpy and storage capacity as main KPIs for the comparison of those systems and discuss the technical availability on a relevant scale. In the field of process- and reactor development our emphasis lies on the power density of the chemical conversion units. The LOHC technology still requires further development to reach the necessary energy efficiency, flexibility and overall research maturity for market competitivity and commercial impact.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001019180100001 Publication Date 2023-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 9.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:196520 Serial 8845
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; De Bock, A.; Ysebaert, T.; Belmans, B.; Denys, S.
Title Modeling the hygrothermal behavior of green walls in Comsol Multiphysics® : validation against measurements in a climate chamber Type A1 Journal article
Year 2023 Publication Building and environment Abbreviated Journal
Volume 238 Issue Pages 110377-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings
Abstract Green walls (GW) can diminish building's surface temperature through shading, insulation, and evapotranspiration mechanisms. These can be analyzed by computer models that account for heat and mass transfer phenomena. However, most previous models were one-dimensional thermal simulations in which boundary conditions (BC), like convective moisture transport, were not or only partly considered. The present work proposes a more comprehensive way to predict GW's hygrothermal behavior by integrating a 3D multiphysics model that couples heat and moisture transport in Comsol Multiphysics®. The air cavity that usually separates the GW from the building was also considered. Heat sink terms were added to represent plants' transpiration and substrates' evaporation, considering the leaf area density (LAD) and substrate's water saturation (Sr). The model was validated against experiments where four green wall-test panels (GW-TPs) were evaluated in a climate chamber under steady-state conditions. This provides a much sounder approach for validation than what currently exists (r = 0.97; RMSE = 0.33 °C). The four GW-TPs decreased the masonry's surface temperature in the range of 0.89–1.14 °C (0.97 ± 0.11 SD °C). The average contribution of the evapotranspiration effect was 30%, whereas the contribution of the air cavity was 60.7 ± 0.09%. The temperature at the substrate's rear was reduced on average by 0.57 ± 0.15 SD °C. When solar radiation was considered as a BC, the GW-TPs decreased the building's surface temperature by 10 °C. Lastly, high values of LAD and Sr translated into increased temperature reduction values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001001412600001 Publication Date 2023-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4; 2023 IF: 4.053
Call Number UA @ admin @ c:irua:196467 Serial 8899
Permanent link to this record
 

 
Author Voordeckers, D.
Title Design to breathe : understanding and altering wind patterns in street canyons to reduce human exposure to air pollution Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xxii, 303 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Air pollution is proclaimed by the World Health Organiaation (WHO) as the biggest environmental threat to human health. Street canyons, or urban roads flanked by a continuous row of high buildings on both sides, are perceived as typical bottleneck areas for air quality due to their lack of natural ventilation. This doctoral thesis aims to integrate expert knowledge on in-canyon flow fields and pollution dispersion in street canyons from the specialized field of (bio)engineering into the field of urban planning and vice versa. In Chapter 1, a Geospatial Information System (GIS) method was developed to detect exposure zones and hotspot street canyons. A critical combination between aspect ratio (AR > 0.65) and traffic volume (TVmax > 300) was detected and subsequently used to detect hotspot street canyons in three major European cities (Antwerp, London and Paris). Chapter 2 focusses on acquiring in-depth knowledge on flow and concentration fields in street canyons by conducting an extensive literature review on over 200 studies and translates this knowledge into nineteen guidelines and eleven spatial tools, comprised in a toolbox for urban planning. Subsequently, computational fluid dynamics (CFD) was used into a research trough design process (Chapter 4) to illustrate how the design tools can be applied to a specific case study (Belgiëlei, Antwerp). Alternations to traffic lanes (traffic lane reduction and lateral displacement) combined with low boundary walls (LBWs), were found to reduce NO2 levels in the entire pedestrian area up to – 3.6 % and peak pollutions were reduced by -8 %. A maximum NO2 reduction was reached by combining a traffic lane displacement with hedges, adjustments to the tree planting pattern and an increased ground-level permeability, leading to reductions up to – 4.5 % in the pedestrian areas. In conclusion, urban design was found to be a valuable tool to enhance the effect of emission reduction strategies and draw in-canyon concentrations closer to the value of the background concentration. However, the background concentration seemed to dominate the efficiency of the urban design interventions and therefore, additional measures should be taken to reduce background pollution levels. This dissertation aims to contribute to the awareness of air pollution in street canyons, as well as support local governments in taking action by delivering spatial tools and guidelines applicable for urban planning and represents a framework for the dissemination of expert information on air quality in street canyons to the field of urban planning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196399 Serial 7767
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E.
Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
Year 2023 Publication Journal of cleaner production Abbreviated Journal
Volume 410 Issue Pages 137278-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991013600001 Publication Date 2023-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.1; 2023 IF: 5.715
Call Number UA @ admin @ c:irua:196227 Serial 7770
Permanent link to this record
 

 
Author Niklas, K.J.; Shi, P.; Gielis, J.; Schrader, J.; Niinemets, U.
Title Editorial: leaf functional traits : ecological and evolutionary implications Type Editorial
Year 2023 Publication Frontiers in plant science Abbreviated Journal
Volume 14 Issue Pages 1169558-5
Keywords Editorial; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000964122500001 Publication Date 2023-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.6; 2023 IF: 4.298
Call Number UA @ admin @ c:irua:196076 Serial 7834
Permanent link to this record
 

 
Author Wittner, N.; Gergely, S.; Slezsák, J.; Broos, W.; Vlaeminck, S.E.; Cornet, I.
Title Follow-up of solid-state fungal wood pretreatment by a novel near-infrared spectroscopy-based lignin calibration model Type A1 Journal article
Year 2023 Publication Journal of microbiological methods Abbreviated Journal
Volume 208 Issue Pages 106725-106727
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Lignin removal plays a crucial role in the efficient bioconversion of lignocellulose to fermentable sugars. As a delignification process, fungal pretreatment has gained great interest due to its environmental friendliness and low energy consumption. In our previous study, a positive linear correlation between acid-insoluble lignin degradation and the achievable enzymatic saccharification yield has been found, hereby highlighting the importance of the close follow-up of lignin degradation during the solid-state fungal pretreatment process. However, the standard quantification of lignin, which relies on the two-step acid hydrolysis of the biomass, is highly laborious and time-consuming. Vibrational spectroscopy has been proven as a fast and easy alternative; however, it has not been extensively researched on lignocellulose subjected to solid-state fungal pretreatment. Therefore, the present study examined the suitability of near-infrared spectroscopy (NIR) for the rapid and easy assessment of lignin content in poplar wood pretreated with Phanerochaete chrysosporium. Furthermore, the predictive power of the obtained calibration model and the recently published ATR-FTIR spectroscopy-based model were compared for the first time using the same fungus-treated wood data set. PLSR was used to correlate the NIR spectra to the acid-insoluble lignin contents (19.9%-27.1%) of pretreated wood. After normalization and second derivation, a PLSR model with a good coefficient of determination (RCV2 = 0.89) and a low root mean square error (RMSECV = 0.55%) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. The performance of this PLSR model was comparably good to the one obtained by ATR-FTIR (RCV2 = 0.87) while it required more extensive spectral pre-processing. In conclusion, both methods will be highly useful for the high-throughput and user-friendly monitoring of lignin degradation in a solid-state fungal pretreatment-based biorefinery concept.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000983287400001 Publication Date 2023-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-7012 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access
Notes Approved Most recent IF: 2.2; 2023 IF: 1.79
Call Number UA @ admin @ c:irua:195814 Serial 9038
Permanent link to this record
 

 
Author Shi, P.; Wang, L.; Quinn, B.K.K.; Gielis, J.
Title A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds Type A1 Journal article
Year 2023 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume 15 Issue 1 Pages 231-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Preston's equation is a general model describing the egg shape of birds. The parameters of Preston's equation are usually estimated after re-expressing it as the Todd-Smart equation and scaling the egg's actual length to two. This method assumes that the straight line through the two points on an egg's profile separated by the maximum distance (i.e., the longest axis of an egg's profile) is the mid-line. It hypothesizes that the photographed egg's profile is perfectly bilaterally symmetrical, which seldom holds true because of photographic errors and placement errors. The existing parameter estimation method for Preston's equation considers an angle of deviation for the longest axis of an egg's profile from the mid-line, which decreases prediction errors to a certain degree. Nevertheless, this method cannot provide an accurate estimate of the coordinates of the egg's center, and it leads to sub-optimal parameter estimation. Thus, it is better to account for the possible asymmetry between the two sides of an egg's profile along its mid-line when fitting egg-shape data. In this paper, we propose a method based on the optimization algorithm (optimPE) to fit egg-shape data and better estimate the parameters of Preston's equation by automatically searching for the optimal mid-line of an egg's profile and testing its validity using profiles of 59 bird eggs spanning a wide range of existing egg shapes. We further compared this method with the existing one based on multiple linear regression (lmPE). This study demonstrated the ability of the optimPE method to estimate numerical values of the parameters of Preston's equation and provide the theoretical egg length (i.e., the distance between two ends of the mid-line of an egg's profile) and the egg's maximum breadth. This provides a valuable approach for comparing egg shapes among conspecifics or across different species, or even different classes (e.g., birds and reptiles), in future investigations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000927531000001 Publication Date 2023-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 1.457
Call Number UA @ admin @ c:irua:195347 Serial 7279
Permanent link to this record
 

 
Author Baetens, D.; Schoofs, K.; Somers, N.; Denys, S.
Title A brief review on Multiphysics modelling of the various physical and chemical phenomena occurring in active oxidation reactors Type A1 Journal article
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 40 Issue Pages 100764-100766
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Heterogeneous photocatalysis can be used as an advanced oxidation technology frequently studied for application in photoreactors for air and water treatment. Extensive experimental investigation entails high costs and is also time consuming. Multiphysics modelling, a relatively new numerical method, provides a cost-effective and valuable alternative. By reconstructing the reactor geometry in dedicated software, meshing it and solving for occurring physical and chemical phenomena, Multiphysics models can be used to evaluate the performance of different reactor designs, increase insight into the occurring phenomena and study the influence of operational parameters on reactor performance. Finally, Multiphysics models are also developed for various applications like optimising the operational parameters, creating the ideal reactor design or scaling up a lab-scale reactor to a realistic prototype.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000947344000001 Publication Date 2023-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 9.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:195208 Serial 7278
Permanent link to this record
 

 
Author De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado Alvarado, A.A.; Audenaert, A.
Title A review on the leaf area index (LAI) in vertical greening systems Type A1 Journal article
Year 2023 Publication Building and environment Abbreviated Journal
Volume 229 Issue Pages 109926-14
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Sustainable Pavements and Asphalt Research (SuPAR); Energy and Materials in Infrastructure and Buildings
Abstract The leaf area index (LAI) is a key dynamic parameter in Vertical Greening Systems (VGS). It quantifies the total amount of leaf area in the canopy and largely determines the extent of co-benefits of VGS. Whereas many studies on VGS discuss the importance of the LAI, only few elaborate on the parameter itself, how it is determined and what the current limitations are in VGS. Moreover, although there is scientific consensus on the importance of LAI in VGS, specific non-destructive monitoring techniques for continuous LAI monitoring appear to be absent, which results in limited overall data on the LAI of VGS under different spatial and temporal conditions and problems in quantifying the benefits of VGS in practice. To fill these gaps, this paper specifically focuses on the LAI of VGS and its monitoring techniques. An overview of existing LAI monitoring techniques in the field of VGS is presented. To arrive at dedicated techniques, this is complemented by a thorough analysis of LAI monitoring techniques used in other research fields, e.g. agriculture and forestry. It is established that two indirect techniques for LAI monitoring are currently available in the VGS sector, but a proper standardized sampling methodology currently lacks. Monitoring techniques used in other sectors offer opportunities for developing dedicated monitoring methods for VGS, but require further research due to the specific features of VGS systems. Furthermore, guidelines are proposed for a more standardized LAI determination of reporting of LAI values in VGS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950866100001 Publication Date 2022-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2023 IF: 4.053
Call Number UA @ admin @ c:irua:194575 Serial 9085
Permanent link to this record
 

 
Author Xie, Y.; Jia, M.; De Wilde, F.; Daeninck, K.; De Clippeleir, H.; Verstraete, W.; Vlaeminck, S.E.
Title Feasibility of packed-bed trickling filters for partial nitritation/anammox : effects of carrier material, bottom ventilation openings, hydraulic loading rate and free ammonia Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 373 Issue Pages 128713-128719
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4–2.2 m3 m−2 h−1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m−2 h−1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d−1, 30 °C) and achieve relatively low NO3–-N accumulation (13%). Likely FA levels of around 1.3–3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000945892500001 Publication Date 2023-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:193652 Serial 7306
Permanent link to this record
 

 
Author Alloul, A.; Blansaer, N.; Cabecas Segura, P.; Wattiez, R.; Vlaeminck, S.E.; Leroy, B.
Title Dehazing redox homeostasis to foster purple bacteria biotechnology Type A1 Journal article
Year 2023 Publication Trends in biotechnology : regular edition Abbreviated Journal
Volume 41 Issue 1 Pages 106-119
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several ‘electron sinking’ strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000923198400001 Publication Date 2022-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1879-3096;0167-7799 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 17.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 17.3; 2023 IF: 11.126
Call Number UA @ admin @ c:irua:192944 Serial 7294
Permanent link to this record
 

 
Author Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E.
Title Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
Year 2023 Publication The science of the total environment Abbreviated Journal
Volume 866 Issue Pages 161172-161179
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000922040000001 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:192943 Serial 7297
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A.
Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 457 Issue Pages 141222-21
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000951011600001 Publication Date 2022-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:192868 Serial 7282
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B.
Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
Year 2022 Publication Biochemical engineering journal Abbreviated Journal Biochem Eng J
Volume 186 Issue Pages 108547-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891992900005 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-703x; 1873-295x ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:192741 Serial 7332
Permanent link to this record