toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Berdiyorov, G.R.; Peeters, F.M. doi  openurl
  Title Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 3 Pages 1133-1137  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of vacancy defects on the structural properties and the thermal stability of free standing silicene – a buckled structure of hexagonally arranged silicon atoms – is studied using reactive molecular dynamics simulations. Pristine silicene is found to be stable up to 1500 K, above which the system transits to a three-dimensional amorphous configuration. Vacancy defects result in local structural changes in the system and considerably reduce the thermal stability of silicene: depending on the size of the vacancy defect, the critical temperature decreases by more than 30%. However, the system is still found to be stable well above room temperature within our simulation time of 500 ps. We found that the, stability of silicene can be increased by saturating the dangling bonds at the defect edges by foreign atoms (e.g., hydrogen).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327868400015 Publication Date 2013-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 62 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. The authors are grateful to Prof. Adri van Duin for his support with the ReaxFF force field. ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:112829 Serial 1658  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 2 Pages 025205-25209  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329108000013 Publication Date 2013-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 51 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:112286 Serial 2823  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 14 Pages 144501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325498300004 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:111145 Serial 3891  
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Peeters, F.M.; Kwok, W.K. url  doi
openurl 
  Title Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 6 Pages 067001-67005  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322799200013 Publication Date 2013-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 63 Open Access  
  Notes ; This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:110750 Serial 2836  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Doria, M.M.; de Romaguera, A.R.C.; Milošević, M.V.; Brandt, E.H.; Peeters, F.M. url  doi
openurl 
  Title Current-induced cutting and recombination of magnetic superconducting vortex loops in mesoscopic superconductor-ferromagnet heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184508-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex loops are generated by the inhomogeneous stray field of a magnetic dipole on top of a current-carrying mesoscopic superconductor. Cutting and recombination processes unfold under the applied drive, resulting in periodic voltage oscillations across the sample. We show that a direct and detectable consequence of the cutting and recombination of these vortex loops in the present setup is the onset of vortices at surfaces where they were absent prior to the application of the external current. The nonlinear dynamics of vortex loops is studied within the time-dependent Ginzburg-Landau theory to describe the profound three-dimensional features of their time evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319252000008 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the bilateral programme between Flanders and Brazil. G.R.B. acknowledges support from FWO-VI. A.R. de C.R. acknowledges CNPq for financial support. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109648 Serial 593  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184510-184519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319653400007 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109643 Serial 3406  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Chao, X.H.; Peeters, F.M.; Wang, H.B.; Moshchalkov, V.V.; Zhu, B.Y. url  doi
openurl 
  Title Magnetoresistance oscillations in superconducting strips : a Ginzburg-Landau study Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 22 Pages 224504-224508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as a function of the magnetic field, the amplitude of which depends both on sample dimensions and external parameters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dynamic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the monotonic background on which the resistance oscillations due to the entry of additional vortices are superimposed. Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetoresistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312064300004 Publication Date 2012-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF-NES program. G. R. B. acknowledges support from FWO-Vl. B.Y.Z. acknowledges the support from the MOST 973 Projects No. 2011CBA00110 and No. 2009CB930803, and the National Natural Science Foundation of China. V. V. M. acknowledges support from the Methusalem Funding by the Flemish Government. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105969 Serial 1930  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Cabral, L.R.E.; Peeters, F.M. pdf  doi
openurl 
  Title Surface barrier for flux entry and exit in mesoscopic superconducting systems Type A1 Journal article
  Year 2005 Publication Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 46 Issue 9 Pages 095105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy barrier which has to be overcome for a single vortex to enter or exit the sample is studied for thin superconducting disks, rings, and squares using the nonlinear Ginzburg-Landau theory. The shape and the height of the nucleation barrier is investigated for different sample radii and thicknesses and for different values of the Ginzburg-Landau parameter kappa. It is shown that the London theory considerably overestimates (underestimates) the energy barrier for vortex expulsion (penetration). (c) 2005 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000232206700005 Publication Date 2005-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 18 Open Access  
  Notes Approved Most recent IF: 1.077; 2005 IF: 1.192  
  Call Number UA @ lucian @ c:irua:103142 Serial 3393  
Permanent link to this record
 

 
Author Lipavsky, P.; Elmurodov, A.; Lin, P.-J.; Matlock, P.; Berdiyorov, G.R. url  doi
openurl 
  Title Effect of normal current corrections on the vortex dynamics in type-II superconductors Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 14 Pages 144516-144518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the time-dependent Ginzburg-Landau theory we discuss the effect of nonmagnetic interactions between the normal current and supercurrent in the presence of electric and magnetic fields. The correction due to the current-current interactions is shown to have a transient character so that it contributes only when a system evolves. Numerical studies for thin current-carrying superconducting strips with no magnetic feedback show that the effect of the normal current corrections is more pronounced in the resistive state where fast-moving kinematic vortices are formed. Simulations also reveal that the largest contribution due to current-current interactions appears near the sample edges, where the vortices reach their maximal velocity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309809700007 Publication Date 2012-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors are grateful to Alex Gurevich and Tom Lemberger who brought the longitudinal f-sum rule to our attention. This work was supported by Grants GACR P204/10/0687 and P204/11/0015. We also acknowledge the support from the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vl. P.-J.L. acknowledges support from Old Dominion University. P.M. acknowledges support through UA research index SR-614-1203. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:102168 Serial 827  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700014 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101850 Serial 3801  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Latimer, M.L.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M. url  doi
openurl 
  Title Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 5 Pages 057004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to current-excited moving vortices, where the applied current in competition with the oscillating Meissner currents imposes or removes the barriers for vortex motion in an increasing magnetic field. Because of the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-critical temperature (T-c) samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-T-c samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000306994900024 Publication Date 2012-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 65 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the U. S. Department of Energy (DOE) Award No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the focused-ion-beam milling was performed. ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:100832 Serial 1780  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Spatially dependent sensitivity of superconducting meanders as single-photon detectors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 262603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The photo-response of a thin current-carrying superconducting stripe with a 90 degrees turn is studied within the time-dependent Ginzburg-Landau theory. We show that the photon acting near the inner corner (where the current density is maximal due to the current crowding [J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011)]) triggers the nucleation of superconducting vortices at currents much smaller than the expected critical one, but does not bring the system to a higher resistive state and thus remains undetected. The transition to the resistive state occurs only when the photon hits the stripe away from the corner due to there uniform current distribution across the sample, and dissipation is due to the nucleation of a kinematic vortex-antivortex pair near the photon incidence. We propose strategies to account for this problem in the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731627]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305831500057 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). G. R. B. acknowledges individual support from FWO-VI. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100336 Serial 3066  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  openurl
  Title Novel commensurability effects in superconducting films with antidot arrays Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract http://dx.doi.org/doi:10.1103/PhysRevLett.96.207001  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited Open Access  
  Notes Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:58360 Serial 2372  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: