|   | 
Details
   web
Records
Author Karczewski, G.; Wojtowicz, T.; Wang, Y.-J.; Wu, X.; Peeters, F.M.
Title Electron effective mass and resonant polaron effect in CdTe/CdMgTe quantum wells Type A1 Journal article
Year 2002 Publication Physica status solidi: B: basic research T2 – 10th International Conference on II-VI Compounds, SEP 09-14, 2001, BREMEN, GERMANY Abbreviated Journal Phys Status Solidi B
Volume 229 Issue 1 Pages 597-600
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000173806600118 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 10 Open Access
Notes Approved Most recent IF: 1.674; 2002 IF: 0.930
Call Number UA @ lucian @ c:irua:102838 Serial 925
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
Title Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 1 Pages 015017-15018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a hybrid model is used to investigate the effect of different gas ratios on the Si etching and polymer film deposition characteristics in an Ar/CF4 inductively coupled plasma. The influence of the surface processes on the bulk plasma properties is studied, and also the spatial characteristics of important gas phase and etched species. The densities of F and CF2 decrease when the surface module is included in the simulations, due to the species consumption caused by etching and polymer deposition. The influence of the surface processes on the bulk plasma depends on the Ar/CF4 gas ratio. The deposited polymer becomes thicker at high CF4 content because of more abundant CFx radicals. As a result of the competition between the polymer thickness and the F flux, the etch rate first increases and then decreases upon increasing the CF4 content. The electron properties, more specifically the electron density profile, affect the Si etch characteristics substantially by determining the radical density and flux profiles. In fact, the radial profile of the etch rate is more uniform at low CF4 content since the electron density has a smooth distribution. At high CF4 content, the etch rate is less uniform with a minimum halfway along the wafer radius, because the electron density distribution is more localized. Therefore, our calculations predict that it is better to work at relatively high Ar/CF4 gas ratios, in order to obtain high etch rate and good profile uniformity for etch applications. This, in fact, corresponds to the typical experimental etch conditions in Ar/CF4 gas mixtures as found in the literature, where Ar is typically present at a much higher concentration than CF4.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000314966300022 Publication Date 2012-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:102583 Serial 1320
Permanent link to this record
 

 
Author Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N.
Title Fluid simulation of the phase-shift effect in Ar/CF4 capacitively coupled plasmas Type A1 Journal article
Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 45 Issue 48 Pages 485204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is employed to investigate an Ar/CF4 capacitively coupled plasma, focusing on the phase-shift effect on the plasma characteristics at various frequencies and gas mixture ratios. When the discharge is sustained by a single frequency at 13.56 MHz in an Ar/CF4 mixture with a ratio of 0.9/0.1, no obvious difference is detected between the electron densities obtained in the so-called electrostatic model (with only the static electric fields taken into account) and the electromagnetic model (which includes the electromagnetic effects). However, as the frequency increases to 60 and 100 MHz, the difference becomes distinct, due to the significant influence of the electromagnetic effects. The phase-shift effect on the plasma radial uniformity has also been investigated in a dual frequency discharge, i.e. when the top driven source is switched on with a phase difference phiv ranging from 0 to π, in the frequency range 13.56100 MHz. At low concentration of CF4 (10%), Ar+ ions are the major positive ions in the entire range of frequencies. When the frequency is low, i.e. 13.56 MHz, the Ar+ density exhibits an off-axis peak at phiv = 0 due to the edge effect, and a better uniformity caused by the phase-shift modulation is obtained at phiv = π. At 60 MHz, the Ar+ density varies from edge-peaked at phiv = 0 to uniform (i.e. at phiv = 0.53π), and finally at phiv = π, a broad maximum is observed at the centre due to the standing-wave effect. As the frequency increases to 100 MHz, the best radial uniformity is reached at 0.25π, and the maximum moves again towards the radial wall in the reverse-phase case (phiv = π) due to the dominant skin effect. When the frequency is fixed at 100 MHz, the phase-shift control shows a different behaviour at a high concentration of CF4. For instance, the ${\rm CF}_3
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000311148300011 Publication Date 2012-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 8 Open Access
Notes Approved Most recent IF: 2.588; 2012 IF: 2.528
Call Number UA @ lucian @ c:irua:101754 Serial 1232
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Zhao, S.-X.; Jiang, W.; Wang, Y.-N.
Title Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas Type A1 Journal article
Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 45 Issue 30 Pages 305203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Both geometrical and electrical asymmetry effects in capacitive argon discharges are investigated using a two-dimensional particle-in-cell coupled with Monte Carlo collision model. When changing the ratio of the top and bottom electrode surface areas and the phase shift between the two applied harmonics, the induced self-bias was found to develop separately. By adjusting the ratio between the high and low harmonic amplitudes, the electrical asymmetry effect at a fixed phase shift can be substantially optimized. However, the self-bias caused by the geometrical asymmetry hardly changed. Moreover, the separate control of these two asymmetry effects can also be demonstrated from their power absorption profiles. Both the axial and radial plasma density distributions can be modulated by the electrical asymmetry effect.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000306475200007 Publication Date 2012-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2012 IF: 2.528
Call Number UA @ lucian @ c:irua:100751 Serial 2984
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Q.-Z.; Liu, J.; Song, Y.-H.; Bogaerts, A.; Wang, Y.-N.
Title Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 11 Pages 114101
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000309329300094 Publication Date 2012-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:100637 Serial 802
Permanent link to this record
 

 
Author Wang, Y.J.; Nickel, H.A.; McCombe, B.D.; Peeters, F.M.; Hai, G.Q.; Shi, J.M.; Devreese, J.T.; Wu, X.G.
Title Resonant magnetopolaron effects in GaAs/AlGaAs MQWs at high magnetic fields Type P3 Proceeding
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 797-800
Keywords P3 Proceeding; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19305 Serial 2890
Permanent link to this record
 

 
Author Wang, Y.J.; Nickel, H.A.; McCombe, B.D.; Peeters, F.M.; Shi, J.M.; Hai, G.Q.; Wu, X.G.; Eustis, T.J.; Schaff, W.
Title Resonant magnetopolaron effects due to interface phonons in GaAs/AlGaAs multiple quantum well structures Type A1 Journal article
Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 79 Issue Pages 3226-3229
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1997YC78200033 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 36 Open Access
Notes Approved Most recent IF: 8.462; 1997 IF: 6.140
Call Number UA @ lucian @ c:irua:19278 Serial 2889
Permanent link to this record