toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hervieu, M.; Damay, F.; Poienar, M.; Elkaim, E.; Rouquette, J.; Abakumov, A.M.; Van Tendeloo, G.; Maignan, A.; Martin, C. doi  openurl
  Title Nanostructures in LuFe2O4+\delta Type A1 Journal article
  Year 2013 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume 23 Issue Pages 26-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A LuFe2O4+delta sample, previously characterized by X-ray synchrotron and neutron diffraction, has been studied by electron microscopy techniques, in order to get a precise description of its micro- and nanostructures at room temperature. The X-ray synchrotron data vs. temperature show that the monoclinic distortion is associated with the charge ordering; this distortion results in elongated twinning domains, which enhance the complexity of the microstructural state at room temperature. The structural modulation associated with oxygen excess is observed in large domains inside a non modulated matrix, in contrast with the modulations associated with the charge ordering of the Fe2+ and Fe3+ species, which are mostly short-range. The investigation of the nature and density of defects in the sample shows that they are nano-scaled, preserving the regularity of the layer stacking mode, and limited to the formation of one- or two-units large stacking faults, associated with gliding mechanisms. Based on these observations, an original description of the LuFe2O4 ferrite structure, through puckered [LuO4](infinity) sandwiching [Fe-2](infinity) layers, is proposed. (C) 2013 Elsevier Masson SAS. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000324156200005 Publication Date 2013-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.811; 2013 IF: 1.679  
  Call Number UA @ lucian @ c:irua:111196 Serial 2276  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J. pdf  doi
openurl 
  Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 17 Pages 10009-10020  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000326129000037 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:111394 Serial 822  
Permanent link to this record
 

 
Author Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; Abakumov, A.M.; Zubavichus, Y.V.; Gaskov, A.M.; doi  openurl
  Title Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 45 Pages 23858-23867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of palladium- and ruthenium-based clusters on nanocrystalline tin dioxide interaction with oxygen was studied by temperature-programmed oxygen isotopic exchange with mass-spectrometry detection. The modification of aqueous sol-gel prepared SnO2 by palladium and, to a larger extent, by ruthenium, increases surface oxygen concentration on the materials. The revealed effects on oxygen exchange-lowering the threshold temperature, separation of surface oxygen contribution to the process, increase of heteroexchange rate and oxygen diffusion coefficient, decrease of activation energies of exchange and diffusion-were more intensive for Ru-modified SnO2 than in the case of SnO2/Pd. The superior promoting activity of ruthenium on tin dioxide interaction with oxygen was interpreted by favoring the dissociative O-2 adsorption and increasing the oxygen mobility, taking into account the structure and chemical composition of the modifier clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000327110500046 Publication Date 2013-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:112706 Serial 2924  
Permanent link to this record
 

 
Author Morozov, V.A.; Bertha, A.; Meert, K.W.; Van Rompaey, S.; Batuk, D.; Martinez, G.T.; Van Aert, S.; Smet, P.F.; Raskina, M.V.; Poelman, D.; Abakumov, A.M.; Hadermann, J.; doi  openurl
  Title Incommensurate modulation and luminescence in the CaGd2(1-x)Eu2x(MoO4)4(1-y)(WO)4y (0\leq x\leq1, 0\leq y\leq1) red phosphors Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 21 Pages 4387-4395  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scheelite related compounds (A',A '') [(B',B '')O-4], with B', B '' = W and/or Mo are promising new light-emitting materials for photonic applications, including phosphor converted LEDs (light-emitting diodes). In this paper, the creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescent properties. CaGd2(1-x)Eu2x(MoO4)(4(1-y))(WO4)(4y) (0 <= x <= 1, 0 <= y <= 1) solid solutions with scheelite-type structure were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder X-ray diffraction. Within this series all complex molybdenum oxides have (3 + 2)D incommensurately modulated structures with superspace group I4(1)/a(alpha,beta,0)00(-beta,alpha,0)00, while the structures of all tungstates are (3 + 1)D incommensurately modulated with superspace group I2/b(alpha beta 0)00. In both cases the modulation arises because of cation-vacancy ordering at the A site. The prominent structural motif is formed by columns of A-site vacancies running along the c-axis. These vacant columns occur in rows of two or three aligned along the [110] direction of the scheelite subcell. The replacement of the smaller Gd3+ by the larger Eu3+ at the A-sublattice does not affect the nature of the incommensurate modulation, but an increasing replacement of Mo6+ by W6+ switches the modulation from (3 + 2)D to (3 + 1)D regime. Thus, these solid solutions can be considered as a model system where the incommensurate modulation can be monitored as a function of cation nature while the number of cation vacancies at the A sites remain constant upon the isovalent cation replacement. All compounds' luminescent properties were measured, and the optical properties were related to the structural properties of the materials. CaGd2(1-x)(MoO4)(4(1-y))(WO4)(4y) phosphors emit intense red light dominated by the D-5(0)-F-7(2) transition at 612 nm, along with other transitions from the D-5(1) and D-5(0) excited states. The intensity of the 5D0-7F2 transition reaches a maximum at x = 0.5 for y = 0 and 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000327045000030 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 63 Open Access  
  Notes Approved Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:112776 Serial 1594  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y. pdf  doi
openurl 
  Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue 52 Pages 17860-17870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000328531000028 Publication Date 2013-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 5 Open Access  
  Notes Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:113697 Serial 3064  
Permanent link to this record
 

 
Author Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
  Year 2014 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 13 Issue 3 Pages 216-217  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000331945200002 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 5 Open Access  
  Notes Approved Most recent IF: 39.737; 2014 IF: 36.503  
  Call Number UA @ lucian @ c:irua:114579 Serial 2270  
Permanent link to this record
 

 
Author Zakharova, E.Y.; Kazakov, S.M.; Isaeva, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Kuznetsov, A.N. doi  openurl
  Title Pd5InSe and Pd8In2Se : new metal-rich homological selenides with 2D palladium-indium fragments : synthesis, structure and bonding Type A1 Journal article
  Year 2014 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 589 Issue Pages 48-55  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Two new metal-rich palladium-indium selenides, Pd5InSe and Pd8In2Se, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data, supported by energy-dispersive X-ray spectroscopy and selected area electron diffraction. Both compounds crystallize in tetragonal system with P4/mmm space group (Pd5InSe: a = 4.0290(3) angstrom, c = 6.9858(5) angstrom, Z = 1; Pd8In2Se: a = 4.0045(4) angstrom, c = 10.952(1) angstrom, Z = 1). The first compound belongs to the Pd5TlAs structure type, while the second one – to a new structure type. Main structural units in both selenides are indium-centered [Pd12In] cuboctahedra of the tetragonally distorted Cu3Au type, single-and double-stacked along the c axis in Pd5InSe and Pd8In2Se, respectively, alternating with [Pd8Se] rectangular prisms. DFT electronic structure calculations predict both compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function topology, both compounds feature multi-centered palladium-indium interactions in their heterometallic fragments. (C) 2013 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000330181400008 Publication Date 2013-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.133; 2014 IF: 2.999  
  Call Number UA @ lucian @ c:irua:114840 Serial 3552  
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A. doi  openurl
  Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 2 Pages 1288  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000330543600051 Publication Date 2014-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 1 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:115730 Serial 2874  
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M. doi  openurl
  Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 2 Issue 8 Pages 2671-2680  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000331247500031 Publication Date 2013-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488;2050-7496; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 56 Open Access  
  Notes Approved Most recent IF: 8.867; 2014 IF: 7.443  
  Call Number UA @ lucian @ c:irua:115807 Serial 659  
Permanent link to this record
 

 
Author Gou, H.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Van Tendeloo, G.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; Liermann, H.P.; Dubrovinsky, L.; Dubrovinskaia, N.; url  doi
openurl 
  Title Peierls distortion, magnetism, and high hardness of manganese tetraboride Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 6 Pages 064108-64109  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure, high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 features a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 mu(B)/f.u., ferromagnetic spin correlations, and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332405000002 Publication Date 2014-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115819 Serial 2571  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
  Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 215 Issue Pages 245-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000336891300037 Publication Date 2014-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 4 Open Access  
  Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133  
  Call Number UA @ lucian @ c:irua:117066 Serial 3551  
Permanent link to this record
 

 
Author Meert, K.W.; Morozov, V.A.; Abakumov, A.M.; Hadermann, J.; Poelman, D.; Smet, P.F. url  doi
openurl 
  Title Energy transfer in Eu3+ doped scheelites : use as thermographic phosphor Type A1 Journal article
  Year 2014 Publication Optics express Abbreviated Journal Opt Express  
  Volume 22 Issue 9 Pages A961-A972  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D0 7F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335905300037 Publication Date 2014-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.307; 2014 IF: 3.488  
  Call Number UA @ lucian @ c:irua:117067 Serial 1044  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. doi  openurl
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3306-3315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336637000036 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117766 Serial 2232  
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J. pdf  doi
openurl 
  Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 17 Pages 9407-9415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000341229600068 Publication Date 2014-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 48 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297  
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M. doi  openurl
  Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue 36 Pages 12658-12666  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000341544600029 Publication Date 2014-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 11 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:119906 Serial 96  
Permanent link to this record
 

 
Author Mikhailova, D.; Reichel, P.; Tsirlin, A.A.; Abakumov, A.M.; Senyshyn, A.; Mogare, K.M.; Schmidt, M.; Kuo, C.Y.; Pao, C.W.; Pi, T.W.; Lee, J.F.; Hu, Z.; Tjeng, L.H.; doi  openurl
  Title Oxygen-driven competition between low-dimensional structures of Sr3CoMO6 and Sr3CoMO7-\delta with M = Ru,Ir Type A1 Journal article
  Year 2014 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 43 Issue 37 Pages 13883-13891  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have realized a reversible structure transformation of one-dimensional 1D K4CdCl6-type Sr3CoMO6 with the Co2+/M4+ cation ordering into the two-dimensional 2D double layered Ruddlesden-Popper structure Sr3CoMO7-delta with a random distribution of Co and M (with M = Ru, Ir) upon increasing the partial oxygen pressure. The combined soft and hard X-ray absorption spectroscopy studies show that under transformation, Co and M cations were oxidized to Co3+ and M5+. During oxidation, high-spin Co2+ in Sr3CoMO6 first transforms into high-spin Co3+ in oxygen-deficient Sr3CoMO7-delta, and then further transforms into low-spin Co3+ in fully oxidized Sr3CoMO7 upon further increasing the partial pressure of oxygen. The 1D Sr3CoMO6 compound is magnetically ordered at low temperatures with the magnetic moments lying along the c-axis. Their alignment is parallel for Sr3CoRuO6 and antiparallel for Sr3CoIrO6. The 2D compounds reveal a spin-glass-like behavior related to the random distribution of magnetic cations in the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000342074100009 Publication Date 2014-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.029; 2014 IF: 4.197  
  Call Number UA @ lucian @ c:irua:119960 Serial 2545  
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
  Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 205 Issue Pages 305-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000343117600041 Publication Date 2014-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 36 Open Access  
  Notes Approved Most recent IF: 5.401; 2014 IF: 4.097  
  Call Number UA @ lucian @ c:irua:121107 Serial 3848  
Permanent link to this record
 

 
Author Malo, S.; Abakumov, A.M.; Daturi, M.; Pelloquin, D.; Van Tendeloo, G.; Guesdon, A.; Hervieu, M. doi  openurl
  Title Sr21Bi8Cu2(CO3)(2)O-41, a Bi5+ Oxycarbonate with an Original 10L Structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 19 Pages 10266-10275  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The layered structure of Sr21Bi8Cu2(CO3)(2)O-41 (Z = 2) was determined by transmission electron microscopy, infrared spectroscopy, and powder X-ray diffraction refinement in space group P6(3)/mcm (No. 194), with a = 10.0966(3)angstrom and c = 26.3762(5)angstrom. This original 10L-type structure is built from two structural blocks, namely, [Sr15Bi6Cu2(CO3)O-29] and [Sr6Bi2(CO3)O-12]. The Bi5+ cations form [Bi2O10] dimers, whereas the Cu2+ and C atoms occupy infinite tunnels running along (c) over right arrow. The nature of the different blocks and layers is discussed with regard to the existing hexagonal layered compounds. Sr21Bi8Cu2(CO3)(2)O-41 is insulating and paramagnetic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000342856800039 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 4.857 Times cited Open Access  
  Notes Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:121115 Serial 3114  
Permanent link to this record
 

 
Author Charkin, D.O.; Demchyna, R.; Prots, Y.; Borrmann, H.; Burkhardt, U.; Schwarz, U.; Schnelle, W.; Plokhikh, I.V.; Kazakov, S.M.; Abakumov, A.M.; Batuk, D.; Verchenko, V.Y.; Tsirlin, A.A.; Curfs, C.; Grin, Y.; Shevelkov, A.V.; doi  openurl
  Title Two New Arsenides, Eu7Cu44As23 and Sr7Cu44As23, With a New Filled Variety of the BaHg11 Structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 20 Pages 11173-11184  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two new ternary arsenides, namely, Eu7Cu44As23 and Sr7Cu44As23, were synthesized from elements at 800 degrees C. Their crystal structure represents a new filled version of the BaHg11 motif with cubic voids alternately occupied by Eu(Sr) and As atoms, resulting in a 2 x 2 x 2 superstructure of the aristotype: space group Fm (3) over barm, a = 16.6707(2) angstrom and 16.7467(2) angstrom, respectively. The Eu derivative exhibits ferromagnetic ordering below 17.5 K. In agreement with band structure calculations both compounds are metals, exhibiting relatively low thermopower, but high electrical and low thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000343527700049 Publication Date 2014-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:121141 Serial 3784  
Permanent link to this record
 

 
Author Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M. pdf  url
doi  openurl
  Title Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue 48 Pages 16932-16939  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000345883900040 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:121331 Serial 1169  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L. pdf  url
doi  openurl
  Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 48 Pages 8185-8191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346480800016 Publication Date 2014-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 27 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:122230 Serial 1408  
Permanent link to this record
 

 
Author Morozov, V.A.; Raskina, M.V.; Lazoryak, B.I.; Meert, K.W.; Korthout, K.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.; pdf  doi
openurl 
  Title Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 24 Pages 7124-7136  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The R-2(MoO4)(3) (R = rare earth elements) molybdates doped with Eu3+ cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R2-xEux(MoO4)(3) (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (alpha) and orthorhombic (beta') R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic beta'-phases could be synthesized only by quenching from high temperature to room temperature for Gd2-xEux(MoO4)(3) in the Eu3+-rich part (x > 1) and for all Sm2-xEux(MoO4)(3) solid solutions. The transformation from the alpha-phase to the beta'-phase results in a notable increase (similar to 24%) of the unit cell volume for all R2-xEux(MoO4)(3) (R = Sm, Gd) solid solutions. The luminescent properties of all R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) solid solutions were measured, and their optical properties were related to their structural properties. All R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) phosphors emit intense red light dominated by the D-5(0)-> F-7(2) transition at similar to 616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO8 to RO7 for the alpha- and beta'-modification, respectively. The Gd2-xEux(MoO4)(3) solid solutions are the most efficient emitters in the range of 0 < x < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm2-xEux(MoO4)(3) for higher Eu3+ concentrations (1.5 <= x <= 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet-visible-infrared regions of the EELS spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347139700027 Publication Date 2014-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Fwo G039211n; G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:122829UA @ admin @ c:irua:122829 Serial 558  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J. url  doi
openurl 
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B  
  Volume 71 Issue 71 Pages 127-143  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000352166500002 Publication Date 2015-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.032 Times cited 11 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA  
  Call Number c:irua:124411 Serial 3408  
Permanent link to this record
 

 
Author Kaminsky, F.V.; Ryabchikov, I.D.; McCammon, C.A.; Longo, M.; Abakumov, A.M.; Turner, S.; Heidari, H. pdf  doi
openurl 
  Title Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond Type A1 Journal article
  Year 2015 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett  
  Volume 417 Issue 417 Pages 49-56  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ferropericlase (fPer) inclusions from kimberlitic lower-mantle diamonds recovered in the Juina area, Mato Grosso State, Brazil were analyzed with transmission electron microscopy, electron energy-loss spectroscopy and the flank method. The presence of exsolved non-stoichiometric Fe3+-enriched clusters, varying in size from 1-2 nm to 10-15 nm and comprising similar to 3.64 vol.% of fPer was established. The oxidation conditions necessary for fPer formation within the uppermost lower mantle (P = 25 GPa, T = 1960 K) vary over a wide range: Delta log f(o2) (IW) from 1.58 to 7.76 (Delta = 6.2), reaching the fayalite-magnetite-quartz (FMQ) oxygen buffer position. This agrees with the identification of carbonates and free silica among inclusions within lower-mantle Juina diamonds. On the other hand, at the base of the lower mantle Delta log f(o2) values may lie at and below the iron-wustite (IW) oxygen buffer. Hence, the variations of Delta log f(o2) values within the entire sequence of the lower mantle may reach ten logarithmic units, varying from the IW buffer to the FMQ buffer values. The similarity between lower- and upper-mantle redox conditions supports whole mantle convection, as already suggested on the basis of nitrogen and carbon isotopic compositions in lower- and upper-mantle diamonds. The mechanisms responsible for redox differentiation in the lower mantle may include subduction of oxidized crustal material, mechanical separation of metallic phase(s) and silicate-oxide mineral assemblages enriched in ferric iron, as well as transfer of fused silicate-oxide material presumably also enriched in ferric iron through the mantle. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351799400006 Publication Date 2015-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.409 Times cited 23 Open Access  
  Notes Approved Most recent IF: 4.409; 2015 IF: 4.734  
  Call Number c:irua:125451 Serial 2539  
Permanent link to this record
 

 
Author Blandy, J.N.; Abakumov, A.M.; Christensen, K.E.; Hadermann, J.; Adamson, P.; Cassidy, S.J.; Ramos, S.; Free, D.G.; Cohen, H.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.; url  doi
openurl 
  Title Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue 3 Pages 041520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides. (C) 2015 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353828400027 Publication Date 2015-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 5 Open Access  
  Notes Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:126021 Serial 3049  
Permanent link to this record
 

 
Author Lieberman, C.M.; Filatov, A.S.; Wei, Z.; Rogachev, A.Y.; Abakumov, A.M.; Dikarev, E.V. url  doi
openurl 
  Title Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors Type A1 Journal article
  Year 2015 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 6 Issue 6 Pages 2835-2842  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel series of mixed-valent, heteroleptic transition metal diketonates that can be utilized as prospective single-source precursors for the low-temperature preparation of oxide materials are reported. The first mixed-valent iron beta-diketonates with different Fe-III/Fe-II ratios have been synthesized by applying the mixed-ligand approach. Based on nearly quantitative reaction yields and analysis of iron-oxygen bonds, these compounds were formulated as [Fe-III(acac)(3)][Fe-II(hfac)(2)] (1) and [Fe-II(hfac)(2)][Fe-III(acac)(3)][Fe-II(hfac)(2)] (2). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated Fe-II centers chelated by two hfac (hexafluoroacetylacetonate) ligands with electron-withdrawing substituents maintain bridging interactions with oxygen atoms of electron-donating acac (acetylacetonate) groups that chelate the neighboring Fe-III atoms. Switching the ligands on Fe-III and Fe-II atoms in starting reagents resulted in the instant ligand exchange between iron centers and in yet another polynuclear homometallic diketonate [Fe-II(hfac)(2)][Fe-III(acac)(2)(hfac)][Fe-II(hfac)(2)] (3) that adheres to the same bonding pattern as in complexes 1 and 2. The proposed synthetic methodology has been extended to design heterometallic diketonates with different M : M' ratios. Homometallic parent molecules have been used as templates to obtain heterometallic mixed-valent [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Ni-II(hfac)(2)] – [Fe-III(acac)(3)][Ni-II(hfac)(2)] (5) complexes. The combination of two different diketonate ligands with electron-donating and electron-withdrawing substituents was found to be crucial for maintaining the above mixed-valent heterometallic assemblies. Theoretical investigation of two possible “isomers”, [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Mn-III(acac)(3)][Fe-II(hfac)(2)] (40) provided an additional support for the metal site assignment giving a preference of 9.78 kcal mol(-1) for the molecule 4. Heterometallic complexes obtained in the course of this study have been found to act as effective single-source precursors for the synthesis of mixed-transition metal oxide materials MxM2-xO3 and MxMi-xO. The title highly volatile precursors can be used for the low-temperature preparation of both amorphous and crystalline heterometallic oxides in the form of thin films or nanosized particles that are known to operate as efficient catalysts in oxygen evolution reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000353223100021 Publication Date 2015-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 13 Open Access  
  Notes Approved Most recent IF: 8.668; 2015 IF: 9.211  
  Call Number c:irua:126031 Serial 2092  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Sheptyakov, D.V.; Frontzek, M.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Layered oxychlorides [PbBiO2]An+1BnO3n-1Cl2(A = Pb/Bi, B = Fe/Ti) : intergrowth of the hematophanite and sillen phases Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 2946-2956  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New layered structures corresponding to the general formula [PbBiO2]A(n+1)B(n)O(3n-1)Cl(2) Were prepared. Pb5BiFe3O10Cl2 (n = 3) and Pb5Bi2Fe4O13Cl2 (n = 4) are built as a stacking of truncated A(n+1)B(n)O(3n-1) perovskite blocks and alpha-PbO-type [A(2)O(2)](2+) (A = Pb, Bi) blocks combined with chlorine sheets. The alternation of these structural blocks can be represented as an intergrowth between the hematophanite and Sullen-type structural blocks. The crystal and-Magnetic structures of Pb5BiFe3O10Cl2 and Pb5Bi2Fe4O13Cl2 were investigated in the temperature range of 1.5-700 K using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy. Both compounds crystallize in the I4/mmm space group with the unit cell parameters a approximate to a(p) approximate to 3.92 angstrom (a unit-cell parameter of the perovskite-structure), c approximate to 43.0 angstrom for the n = 3 member and c approximate to 53.5 angstrom for the n = 4 member. Despite the large separation between the slabs containing the Fe3+ ions (nearly 14 angstrom), long-range antiferromagnetic order sets in below similar to 600 K with the G-type arrangement of the Fe magnetic moments aligned along the c-axis. The possibility of mixing d(0) and d(n) cations at the B sublattice of these structures was also demonstrated by preparing the Ti-substituted n = 4 member Pb6BiFe3TiO13Cl2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353865800028 Publication Date 2015-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:126060 Serial 1807  
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Saubanere, M.; Doublet, M.-L.; Rodriguez-Carvajal, J.; Van Tendeloo, G.; Tarascon, J.-M. doi  openurl
  Title Li2Cu2O(SO4)2: a possible electrode for sustainable Li-based batteries showing a 4.7 V redox activity vs Li+/Li0 Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 3077-3087  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Li-ion batteries rely on the use of insertion positive electrodes with performances scaling with the redox potential of the 31) metals accompanying Liuptake/removal. Although not commonly studied, the Cu2+/Cu3+ redox potential has been predicted from theoretical calculations to possibly offer a high operating voltage redox couple. We herein report the synthesis and crystal structure of a hitherto-unknown oxysulfate phase, Li2Cu2O(SO4)(2), which contains infinite edgesharing CuO4 chains and presents attractive electrochemical redox activity with respect to Li+/Li, namely amphoteric characteristics. Li2Cu2O(SO4)(2) shows redox activity at 4.7 V vs Li+/Li corresponding to the oxidation of Cu2+ to Cu3+ enlisting ligand holes and associated with the reversible uptake-removal of 0.3 Li. Upon reduction, this compound reversibly uptakes similar to 2 Li at an average potential of about 2.5 V vs Li+/Li, associated with the Cu2+/Cu+ redox couple. The mechanism of the reactivity upon reduction is discussed in detail, with particular attention to the occasional appearance of an oscillation wave in the discharge profile. Our work demonstrates that Cu-based compounds can indeed be fertile scientific ground in the search for new high-energy-density electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353865800043 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access  
  Notes Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:126061 Serial 3541  
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.; pdf  url
doi  openurl
  Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
  Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol  
  Volume 11 Issue 11 Pages 825-833  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000354559600004 Publication Date 2015-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9634; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.72 Times cited 62 Open Access  
  Notes Approved Most recent IF: 5.72; 2015 IF: 6.155  
  Call Number c:irua:126351 Serial 3838  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: