|   | 
Details
   web
Records
Author Cagno, S.; Nuyts, G.; Bugani, S.; De Vis, K.; Schalm, O.; Caen, J.; Helfen, L.; Cotte, M.; Reischig, P.; Janssens, K.
Title Evaluation of manganese-bodies removal in historical stained glass windows via SR-\mu-XANES/XRF and SR-\mu-CT Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 26 Issue 12 Pages 2442-2451
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The speed and effectiveness of a conservation treatment used for stained glass windows have been investigated. Dark-coloured Mn-rich stains can be found in the alteration layer of ancient glass artefacts and cause the surface to turn brown/black: this phenomenon is known as Mn-browning or Mn-staining. While in glass manganese is present in the +II or +III oxidation states, in the Mn-rich bodies, manganese is in a higher oxidation state (+IV). In restoration practice, mildly reducing solutions are employed to eliminate the dark colour and restore the clear appearance of the glass. In this paper the effectiveness and side effects of the use of hydroxylamine hydrochloride for this purpose are assessed. Archaeological fragments of stained glass windows, dated to the 14th century and originating from Sidney Sussex College, Cambridge (UK), were examined by means of synchrotron radiation (SR) based microscopic X-ray Absorption Near-Edge Spectroscopy (μ-XANES) and microscopic X-Ray Fluorescence (μ-XRF) and with high resolution computed absorption tomography (μ-CT) before, during and after the treatment. The monitoring of the glass fragments during the treatment allows us to better understand the manner in which the process unfolds and its kinetics. The results obtained reveal that the hydroxylamine hydrochloride treatment is effective, but also that it has a number of unwanted side effects. These findings are useful for optimizing the time and other modalities of the Mn-reducing treatment as well as minimizing its unwanted results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297030400009 Publication Date 2011-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 17 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. Special thanks to Ms Leonie Seliger, head of the stained-glass conservation studio (The Cathedral Studios-The Chapter of Canterbury Cathedral) for the supply of the archaeological samples. The authors gratefully acknowledge ESRF for granting beamtime (proposal EC-602). ; Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ admin @ c:irua:93848 Serial 5613
Permanent link to this record
 

 
Author Bugani, S.; Modugno, F.; Lucejko, J.J.; Giachi, G.; Cagno, S.; Cloetens, P.; Janssens, K.; Morselli, L.
Title Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography Type A1 Journal article
Year 2009 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
Volume 395 Issue 7 Pages 1977-1985
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In favourable conditions of low temperature and low oxygen concentration, archaeological waterlogged wooden artefacts, such as shipwrecks, can survive with a good state of preservation. Nevertheless, anaerobic bacteria can considerably degrade waterlogged wooden objects with a significant loss in polysaccharidic components. Due to these decay processes, wood porosity and water content increase under ageing. In such conditions, the conservation treatments of archaeological wooden artefacts often involve the replacement of water with substances which fill the cavities and help to prevent collapse and stress during drying. The treatments are very often expensive and technically difficult, and their effectiveness very much depends on the chemical and physical characteristics of the substances used for impregnation. Also important are the degree of cavity-filling, penetration depth and distribution in the structure of the wood. In this study, the distribution in wood cavities of some mixtures based on polyethylene glycols and colophony, used for the conservation of waterlogged archaeological wood, was investigated using synchrotron radiation X-ray computed microtomography (SR-A mu CT). This non-destructive imaging technique was useful for the study of the degraded waterlogged wood and enabled us to visualise the morphology of the wood and the distribution of the materials used in the wood treatments. The study has shown how deposition is strictly related to the dimension of the wooden cavities. The work is currently proceeding with the comparison of synchrotron observations with the data of the solutions viscosity and with those of the properties imparted to the wood by the treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000272017000005 Publication Date 2009-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.431 Times cited 30 Open Access
Notes Approved Most recent IF: 3.431; 2009 IF: 3.480
Call Number UA @ admin @ c:irua:94493 Serial 5853
Permanent link to this record