|   | 
Details
   web
Records
Author Chen, Z.; Bogaerts, A.
Title Response to “Comment on 'Laser ablation of Cu and plume expansion into 1 atm ambient gas'” [J. Appl. Phys. 115, 166101 (2014)] Type Editorial
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 16 Pages 166102
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000335228400092 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:117171 Serial 2898
Permanent link to this record
 

 
Author Autrique, D.; Gornushkin, I.; Alexiades, V.; Chen, Z.; Bogaerts, A.; Rethfeld, B.
Title Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 17 Pages 174102-174105
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A study of ns-laser ablation is presented, which focuses on the transient behavior of the physical processes that act in and above a copper sample. A dimensionless multiphase collisional radiative model describes the interplay between the ablation, collisional, and radiative mechanisms. Calculations are done for a 6 ns-Nd:YAG laser pulse operating at 532 nm and fluences up to 15 J/cm2. Temporal intensity profiles as well as transmissivities are in good agreement with experimental results. It is found that volumetric ablation mechanisms and photo-processes both play an essential role in the onset of ns-laser induced breakdown.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000326455100107 Publication Date 2013-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 13 Open Access
Notes Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:110944 Serial 2906
Permanent link to this record
 

 
Author Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z.
Title Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 10 Issue 6 Pages 2468-2474
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000183316500031 Publication Date 2003-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 41 Open Access
Notes Approved Most recent IF: 2.115; 2003 IF: 2.146
Call Number UA @ lucian @ c:irua:103293 Serial 904
Permanent link to this record