|   | 
Details
   web
Records
Author Llobet, E.; Espinosa, E.H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J.J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.;
Title Carbon nanotube TiO2 hybrid films for detecting traces of O2 Type A1 Journal article
Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 19 Issue 37 Pages 375501-375511
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <= 10 ppm) in a flow of CO(2), which is of interest for the beverage industry.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000258385600014 Publication Date 2008-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 48 Open Access
Notes Pai Approved Most recent IF: 3.44; 2008 IF: 3.446
Call Number UA @ lucian @ c:irua:103083 Serial 282
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Sophie, P.; Dubois, P.; Godfroid, T.; Hecq, M.; Bittencourt, C.;
Title Functionalization of MWCNTs with atomic nitrogen Type A1 Journal article
Year 2009 Publication Micron Abbreviated Journal Micron
Volume 40 Issue 1 Pages 85-88
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study of the changes induced by exposing MWCNTs to a nitrogen plasma, it was found by HRTEM that the atomic nitrogen exposure does not significantly etch the surface of the carbon nanotube (CNT). Nevertheless, the atomic nitrogen generated by a microwave plasma effectively grafts amine, nitrile, amide, and oxime groups onto the CNT surface, as observed by XPS, altering the density of valence electronic states, as seen in UPS. (C) 2008 Elsevier Ltd. All fights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000261420900017 Publication Date 2008-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 24 Open Access
Notes Pai 6/1; Pa 6/27 Approved Most recent IF: 1.98; 2009 IF: 1.626
Call Number UA @ lucian @ c:irua:103080 Serial 1305
Permanent link to this record
 

 
Author Bittencourt, C.; Felten, A.; Douhard, B.; Colomer, J.-F.; Van Tendeloo, G.; Drube, W.; Ghijsen, J.; Pireaux, J.-J.
Title Metallic nanoparticles on plasma treated carbon nanotubes : $Nano2hybrids$ Type A1 Journal article
Year 2007 Publication Surface science : a journal devoted to the physics and chemistry of interfaces T2 – International Conference on NANO-Structures Self Assembling, JUL 02-06, 2006, Aix en Provence, FRANCE Abbreviated Journal Surf Sci
Volume 601 Issue 13 Pages 2800-2804
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multi-wall carbon nanotubes (MWCNTs) were decorated with metal clusters by thermal evaporation. Transmission electron microscopy (TEM) shows that the nature and extent of metal coverage can be varied by plasma treating the MWCNT surface. The metal clusters on oxygen plasma treated arc-discharge MWCNTs have a more dense distribution than the clusters evaporated on as-synthesized are-discharge MWCNTs. In contrast, the plasma treatment did not affect the cluster distribution on CVD MWCNTs. Analyses of the valence band and the core levels by X-ray photoelectron spectroscopy suggest poor charge transfer between gold clusters and MWCNTs; on the contrary suggest good charge transfer between Ni clusters and MWCNTs. (c) 2007 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000248030100055 Publication Date 2006-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-6028; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.062 Times cited 44 Open Access
Notes Pai-V 1 Approved Most recent IF: 2.062; 2007 IF: 1.855
Call Number UA @ lucian @ c:irua:102663 Serial 2011
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Dubois, P.; Hecq, M.; Bittencourt, C.;
Title Functionalization of MWCNTs with atomic nitrogen : electronic structure Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue 4 Pages 045202-45204
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The changes induced by exposing multi-walled carbon nanotubes (CNTs) to atomic nitrogen were analysed by high-resolution transmission electron microscopy (HRTEM), x-ray and ultraviolet photoelectron spectroscopy. It was found that the atomic nitrogen generated by a microwave plasma effectively grafts chemical groups onto the CNT surface altering the density of valence electronic states. HRTEM showed that the exposure to atomic nitrogen does not significantly damage the CNT surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000253177900018 Publication Date 2008-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 16 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:102633 Serial 1306
Permanent link to this record