toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A. pdf  url
doi  openurl
  Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 200 Issue Pages 112886-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977059100001 Publication Date 2023-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:195598 Serial 7291  
Permanent link to this record
 

 
Author Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M. url  doi
openurl 
  Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
  Year 2022 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 221 Issue Pages 110972-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000886072100004 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4  
  Call Number UA @ admin @ c:irua:192194 Serial 7299  
Permanent link to this record
 

 
Author Coulombier, M.; Baral, P.; Orekhov, A.; Dohmen, R.; Raskin, J.P.; Pardoen, T.; Cordier, P.; Idrissi, H. url  doi
openurl 
  Title On-chip very low strain rate rheology of amorphous olivine films Type A1 Journal article
  Year 2024 Publication Acta materialia Abbreviated Journal  
  Volume 266 Issue Pages 119693-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent observations made by the authors revealed the activation of stress induced amorphization and sliding at grain boundary in olivine [1], a mechanism which is expected to play a pivotal role in the viscosity drop at the lithosphere-asthenosphere boundary and the brittle -ductile transition in the lithospheric mantle. However, there is a lack of information in the literature regarding the intrinsic mechanical properties and the elementary deformation mechanisms of this material, especially at time scales relevant for geodynamics. In the present work, amorphous olivine films were obtained by pulsed laser deposition (PLD). The mechanical response including the rate dependent behavior are investigated using a tension -on -chip (TOC) method developed at UCLouvain allowing to perform creep/relaxation tests on thin films at extremely low strain rates. In the present work, strain rate down to 10-12 s- 1 was reached which is unique. High strain rate sensitivity of 0.054 is observed together with the activation of relaxation at the very early stage of deformation. Furthermore, digital image correlation (DIC), used for the first time on films deformed by TOC, reveals local strain heterogeneities. The relationship between such heterogeneities, the high strain rate sensitivity and the effect of the electron beam in the scanning electron microscope is discussed and compared to the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001170513400001 Publication Date 2024-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204864 Serial 9163  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: