|   | 
Details
   web
Records
Author Bertrand, L.; Schoeeder, S.; Anglos, D.; Breese, M.B.H.; Janssens, K.; Moini, M.; Simon, A.
Title Mitigation strategies for radiation damage in the analysis of ancient materials Type A1 Journal article
Year 2015 Publication Trends in analytical chemistry Abbreviated Journal Trac-Trend Anal Chem
Volume 66 Issue Pages 128-145
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The study of materials in cultural heritage artifacts and micro-samples benefits from diagnostic techniques based on intense radiation sources, such as synchrotrons, ion-beam accelerators and lasers. While most of the corresponding techniques are classified as non-destructive, investigation with photons or charged particles entails a number of fundamental processes that may induce changes in materials. These changes depend on irradiation parameters, properties of materials and environmental factors. In some cases, radiation-induced damage may be detected by visual inspection. When it is not, irradiation may still lead to atomic and molecular changes resulting in immediate or delayed alteration and bias of future analyses. Here we review the effects of radiation reported on a variety of cultural heritage materials and describe the usual practice for assessing short-term and long-term effects. This review aims to raise awareness and encourage subsequent research activities to limit radiation side effects.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000352248200020 Publication Date 2014-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-9936 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.442 Times cited 35 Open Access
Notes ; We wish to acknowledge the support of this initiative by the International Atomic Energy Agency. We gratefully thank Professor Manfred Schreiner of the Institute of Natural Sciences and Technology in the Arts (Akademie den bildenden Kunst, Vienna, Austria) for helpful discussions and insights on this work. We thank all colleagues who accepted to have their work reproduced in this review. IPANEMA at Synchrotron SOLEIL, the Hungarian Academy of Science and IESL-FORTH were supported within the Research Infrastructure program CHARISMA of the 7th Framework Programme of the EU (Grant Agreement no. 228330). MM's contribution is based upon work supported by the National Science Foundation under Grant numbers CHE 1241672 and CHE 1440849. We thank Chris McGlinchey and Lauren Klein (Museum of Modern Art, New York, USA) for their critical rereading of the manuscript. ; Approved Most recent IF: 8.442; 2015 IF: 6.472
Call Number UA @ admin @ c:irua:124627 Serial 5729
Permanent link to this record
 

 
Author Alfeld, M.; van der Snickt, G.; Vanmeert, F.; Janssens, K.; Dik, J.; Appel, K.; van der Loeff, L.; Chavannes, M.; Meedendorp, T.; Hendriks, E.
Title Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kröller-Muller Museum Type A1 Journal article
Year 2013 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 111 Issue 1 Pages 165-175
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000316075700020 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 35 Open Access
Notes ; This research was supported by the SSD program of BELSPO, Brussels (project S2-ART). Results are also presented here from Gemeenschappelijke Onderzoeksactie (GOA) 'XANES meets ELNES' (Research Fund, University of Antwerp, Belgium) and from Fonds voor Wetenschappelijk Onderzoek (FWO) (Brussels, Belgium) project Nos. G.0704.08 and G.01769.09. The research leading to these results was funded by the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement No. 226716 and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under the VIDI project “Looking Over the Painter's Shoulder” (grant No. 700.10.426). M. Alfeld is the recipient of a Ph.D. fellowship of the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 1.455; 2013 IF: 1.694
Call Number UA @ admin @ c:irua:108264 Serial 5826
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M.
Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
Volume 11 Issue 17 Pages 7363-7370
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000569375400061 Publication Date 2020-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited 35 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353
Call Number UA @ admin @ c:irua:171996 Serial 6546
Permanent link to this record