|   | 
Details
   web
Records
Author Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M.
Title Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages 10135-10142
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000385785700026 Publication Date 2016-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 2 Open Access (down)
Notes Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:140313 Serial 4440
Permanent link to this record
 

 
Author Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S.
Title Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes Type A1 Journal article
Year 2015 Publication Physiologia plantarum Abbreviated Journal Physiol Plantarum
Volume 154 Issue 1 Pages 82-94
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1day) allocated into the leaf veins, and after 5days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III)-chelate reductase (FRO), a Fe2+ transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353067500007 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.33 Times cited 14 Open Access (down)
Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma 'Futuro in Ricerca') and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 'Structuring the European Research Area' Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). We thank Karen Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.33; 2015 IF: 3.138
Call Number UA @ admin @ c:irua:132500 Serial 5678
Permanent link to this record
 

 
Author Cardinali, M.; De Ruggieri, M.B.; Leone, G.; Prohaska, W.; Alfeld, M.; Janssens, K.
Title The rediscovered portrait of Prospero Farinacci by Caravaggio Type A1 Journal article
Year 2016 Publication Artibus et historiae : an art anthology Abbreviated Journal
Volume Issue 73 Pages 249-284
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Caravaggio's early production as a portrait painter is still the subject of research and a fount of enigmas. Despite the numerous citations in documents, only rarely have these been linked unequivocally to paintings known to date. This is also the case with the `portrait of Farinaccio criminalist painted on a head-size canvas believed to be by Michelangelo from Caravaggio', that was listed in the 1638 inventory of the Marquis Giustiniani and with `the speaker wearing a robe, painted by Caravaggio' on a head-size canvas, owned in 1652 by Caterina Campani, Onorio Longhi's wife. The present multidisciplinary research examines the rediscovery of the portrait of Prospero Farinacci by Caravaggio. The painting, undisclosed until now, hides an underlying female portrait. The authors investigate both compositions from a technical, iconographical and critical point of view, supporting Caravaggio's attribution. The technical researches allow cross-validation in the brushwork and materials of the picture, compared to Caravaggio's early painting technique and style. The portrait of Maffeo Barberini, recently re-ascribed to Caravaggio, shows a significant similarity, while the underlying woman of the retrieved painting closely resembles the gipsy of the Louvre Fortune Teller. In addition, a newly introduced and advanced imaging technique (MaXRF) has detected on the male portrait the feature of the lawyer's robe, which supports the identification with Prospero Farinacci. The intriguing topic of physiognomic accuracy versus stylizing tendency in Caravaggio's portraiture is considered with the aid of Giulio Mancini's observations. Besides, the possible interpretation of the underlying figure as a religious subject sheds a light on the obscure activity of the young Caravaggio in Lorenzo Carli's workshop, recently brought to scholars' attention by new documents and hypotheses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0391-9064 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access (down)
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:152697 Serial 5875
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Saghdel, H.S.
Title External costs from fossil electricity generation : a review of the applied impact pathway approach Type A1 Journal article
Year 2018 Publication Energy & Environment Abbreviated Journal Energ Environ-Uk
Volume 29 Issue 5 Pages 635-648
Keywords A1 Journal article; Engineering Management (ENM)
Abstract This paper reviews and compares 11 studies that have estimated external costs of fossil electricity generation by benefits transfer. These studies include 13 countries and most of these countries are developing countries. The impact pathway approach is applied to estimate the environmental impact arising from fossil fuel-fired power plant's air emission and the related damages on human health. The estimated damages are used to value the monetary external costs from fossil fuel electricity generation. The estimated external costs in the 13 countries vary from 0.51 to 213.5 USD (2005) per MWh due to differences in fossil fuel quality, location, technology, and efficiency of power plants and additionally differences in assumptions, monetization values, and impact estimations. Accounting for these externalities can indicate the actual costs of fossil energy. The results can be applied by policy makers to take measures to avoid additional costs and to apply newer and cleaner energy sources. The described methods in the selected studies for estimating the external costs with respect to incomplete local data can be applied as a useful example for other developing countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440685300001 Publication Date 2018-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0958-305x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.302 Times cited 3 Open Access (down)
Notes ; ; Approved Most recent IF: 0.302
Call Number UA @ admin @ c:irua:153136 Serial 6201
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Sadeghi, H.; Nasseri, A.; Agheli, L.
Title Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach Type A1 Journal article
Year 2017 Publication Energies Abbreviated Journal Energies
Volume 10 Issue 12 Pages 2136-29
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Air pollutants from fossil fuel fired power plants harm the environment and human health. More than 91% of Irans electricity production is from thermal power plants that use natural gas, diesel, and fuel oil. We apply the impact pathway approach to estimate the health impacts arising from Iranian fossil-based electricity generation emission, and in a next step, we calculate monetary costs of the estimated damages, for a one-year period starting from 20 March 2016 through 2017. We use the new version of SIMPACTS (International Atomic Energy Agency, Vienna, Austria) to investigate the health effects from 61 major Iran fossil-based power plants separately. The selected plants represent 95.6% of total Iran fossil-based power generation. Using the individual and different power plant estimates, we avoid extrapolation and our results can be considered more reliable, taking into account spatial differences. The total damage cost is 723.42 million USD (2000). The damage cost per generated electricity varies from 0.06 to 22.41 USD/MWh and average plant damage cost is 2.85 USD/MWh. Accounting for these external costs indicates the actual costs of fossil energy. The results are useful for policy makers to compare the health costs from these plants and to decide on cleaner energy sources and to take measures to increase benefits for society.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423156900207 Publication Date 2017-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.262 Times cited 4 Open Access (down)
Notes ; ; Approved Most recent IF: 2.262
Call Number UA @ admin @ c:irua:149041 Serial 6200
Permanent link to this record
 

 
Author Khalili, M.; Daniels, L.; Lin, A.; Krebs, F.C.; Snook, A.E.; Bekeschus, S.; Bownel, W.B.; Miller, V.
Title Non-thermal plasma-induced immunogenic cell death in cancer Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 42 Pages 423001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recent advances in biomedical research in cancer immunotherapy have identified the use of an oxidative stress-based approach to treat cancers, which works by inducing immunogenic cell death (ICD) in cancer cells. Since the anti-cancer effects of non-thermal plasma (NTP) are largely attributed to the reactive oxygen and nitrogen species that are delivered to and generated inside the target cancer cells, it is reasonable to postulate that NTP would be an effective modality for ICD induction. NTP treatment of tumors has been shown to destroy cancer cells rapidly and, under specific treatment regimens, this leads to systemic tumorspecific immunity. The translational benefit of NTP for treatment of cancer relies on its ability to enhance the interactions between NTP-exposed minor cells and local immune cells which initiates subsequent protective immune responses. This review discusses results from recent investigations of NTP application to induce ICD in cancer cells. With further optimization of clinical devices and treatment protocols, NTP can become an essential part of the therapeutic armament against cancer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000479103100001 Publication Date 2019-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 6 Open Access (down)
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:161774 Serial 6313
Permanent link to this record
 

 
Author Sarikurt, S.; Çakir, D.; Keceli, M.; Sevik, C.
Title The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal
Volume 10 Issue 18 Pages 8859-8868
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The newest members of a two-dimensional material family, involving transition metal carbides and nitrides (called MXenes), have garnered increasing attention due to their tunable electronic and thermal properties depending on the chemical composition and functionalization. This flexibility can be exploited to fabricate efficient electrochemical energy storage (batteries) and energy conversion (thermoelectric) devices. In this study, we calculated the Seebeck coefficients and lattice thermal conductivity values of oxygen terminated M2CO2 (where M = Ti, Zr, Hf, Sc) monolayer MXene crystals in two different functionalization configurations (model-II (MD-II) and model-III (MD-III)), using density functional theory and Boltzmann transport theory. We estimated the thermoelectric figure-of-merit, zT, of these materials by two different approaches, as well. First of all, we found that the structural model (i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials. The lattice thermal conductivity kappa(l), Seebeck coefficient and zT values may vary by 40% depending on the structural model. The MD-III configuration always has the larger band gap, Seebeck coefficient and zT, and smaller kappa(l) as compared to the MD-II structure due to a larger band gap, highly flat valence band and reduced crystal symmetry in the former. The MD-III configuration of Ti2CO2 and Zr2CO2 has the lowest kappa(l) as compared to the same configuration of Hf2CO2 and Sc2CO2. Among all the considered structures, the MD-II configuration of Hf2CO2 has the highest kappa(l), and Ti2CO2 and Zr2CO2 in the MD-III configuration have the lowest kappa(l). For instance, while the band gap of the MD-II configuration of Ti2CO2 is 0.26 eV, it becomes 0.69 eV in MD-III. The zT(max) value may reach up to 1.1 depending on the structural model of MXene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432096400055 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access (down)
Notes Approved no
Call Number UA @ admin @ c:irua:193788 Serial 8654
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V.
Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
Year 2024 Publication Nature Abbreviated Journal
Volume 626 Issue Pages 542-548
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001176943100001 Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 64.8 Times cited Open Access (down)
Notes Approved Most recent IF: 64.8; 2024 IF: 40.137
Call Number UA @ admin @ c:irua:204796 Serial 9144
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B.
Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
Year 2024 Publication Advanced materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001219658400001 Publication Date 2024-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access (down)
Notes Approved Most recent IF: 29.4; 2024 IF: 19.791
Call Number UA @ admin @ c:irua:206037 Serial 9152
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
Year 2024 Publication Small Structures Abbreviated Journal
Volume Issue Pages 2400011-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2688-4062 ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record