|   | 
Details
   web
Records
Author Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M.
Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
Year 2022 Publication Materials & design Abbreviated Journal Mater Design
Volume 221 Issue Pages 110972-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000886072100004 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access (down) OpenAccess
Notes Approved Most recent IF: 8.4
Call Number UA @ admin @ c:irua:192194 Serial 7299
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 26 Pages 14409-14415
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000672734100027 Publication Date 2021-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access (down) OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:179850 Serial 7719
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D.
Title Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 4 Pages 2435-2441
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430155900034 Publication Date 2018-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 9 Open Access (down) Not_Open_Access
Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712
Call Number EMAT @ lucian @c:irua:150794 Serial 4923
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G.
Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 30 Issue 38 Pages 1707017
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000444671900002 Publication Date 2018-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 4 Open Access (down) Not_Open_Access
Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791
Call Number UA @ lucian @ c:irua:153628 Serial 5098
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M.
Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
Year 2019 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 7 Issue 3 Pages 509-522
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458780300004 Publication Date 2018-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 1 Open Access (down) Not_Open_Access
Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256
Call Number UA @ admin @ c:irua:157564 Serial 5264
Permanent link to this record
 

 
Author Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R.
Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 15 Pages 7168-7178
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526300600046 Publication Date 2020-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 1 Open Access (down) Not_Open_Access
Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:170294 Serial 6646
Permanent link to this record
 

 
Author Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume 15 Issue 19 Pages 8772-8780
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000976615200001 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access (down) Not_Open_Access
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:196722 Serial 8873
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A.
Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
Year 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue 1 Pages 011010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353649900011 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 49 Open Access (down)
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:126032 Serial 1048
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access (down)
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 1 Pages 13426
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486139700008 Publication Date 2019-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access (down)
Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:162786 Serial 5375
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Herber, R.H.; Nowik, I.; Hodges, J.P.; Dachraoui, W.; Hadermann, J.; Greenblatt, M.;
Title High magnetic ordering temperature in the perovskites Sr4-xLaxFe3ReO12 (x=0.0, 1.0, 2.0) Type A1 Journal article
Year 2012 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 194 Issue Pages 48-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of perovskites Sr4−xLaxFe3ReO12 (x=0.0, 1.0, 2.0) has been prepared by wet chemistry methods. The structure analyses by powder X-ray and neutron diffraction and electron microscopy show that these compounds adopt simple perovskite structures without cation ordering over the B sites: tetragonal (I4/mcm) for x=0.0 and 1.0 and orthorhombic (Pbmn) for x=2.0. The oxidation states of the cations in the compound with x=0.0 appear to be Fe3+/4+ and Re7+ and decrease for both with La substitution as evidenced by X-ray absorption spectroscopy. All the compounds are antiferromagnetically ordered above room temperature, as demonstrated by Mössbauer spectroscopy and the magnetic structures, which were determined by powder neutron diffraction. The substitution of Sr by La strongly affects the magnetic properties with an increase of TN up to ∼750 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000308896400009 Publication Date 2012-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 9 Open Access (down)
Notes Approved Most recent IF: 2.299; 2012 IF: 2.040
Call Number UA @ lucian @ c:irua:101220 Serial 1435
Permanent link to this record
 

 
Author Retuerto, M.; Yin, Z.; Emge, T.J.; Stephens, P.W.; Li, M.R.; Sarkar, T.; Croft, M.C.; Ignatov, A.; Yuan, Z.; Zhang, S.J.; Jin, C.; Paria Sena, R.; Hadermann, J.; Kotliar, G.; Greenblatt, M.;
Title Hole doping and structural transformation in CsTl1-xHgxCl3 Type A1 Journal article
Year 2015 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 54 Issue 54 Pages 1066-1075
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract CsTlCl3 and CsTlF3 perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl3 in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF3 as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl3 with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl1xHgxCl3 (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl0.9Hg0.1Cl3 is tetragonal as the more stable phase of CsTlCl3. However, CsTl0.8Hg0.2Cl3 is already cubic with the space group Fm3̅m and with two different positions for Tl+ and Tl3+. For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl+, Tl3+, and Hg2+. All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl+ and Tl3+. Raman spectroscopy shows the presence of the active TlClTl stretching mode over the whole series and the intensity of the TlClHg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000348887400048 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 5 Open Access (down)
Notes Approved Most recent IF: 4.857; 2015 IF: 4.762
Call Number c:irua:124420 Serial 1476
Permanent link to this record
 

 
Author Oh, H.; Gennett, T.; Atanassov, P.; Kurttepeli, M.; Bals, S.; Hurst, K.E.; Hirscher, M.
Title Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons Type A1 Journal article
Year 2013 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 177 Issue Pages 66-74
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this report, the possibility of Pt catalytic activity for the dissociation of hydrogen molecules and subsequent hydrogen adsorption on sucrose templated carbon at ambient temperature has been studied. In order to investigate Pt catalytic effect for hydrogen storage solely, 6.8 wt.% Pt-doped (Pt/TC) and pure templated carbon (TC) possessing almost identical specific surface area (SSA) and pore volume (Vp) have been successfully synthesized. Since both Pt/TC and TC shares for their textural properties (e.g. SSA and Vp), any difference of hydrogen adsorption characteristic and storage capacity can be ascribed to the presence of Pt nanoparticles. Both samples are characterized by various techniques such as powder Xray diffraction, ICP-OES, Raman spectroscopy, transmission electron microscopy, cryogenic thermal desorption spectroscopy, low-pressure high-resolution hydrogen and nitrogen BET and high-pressure hydrogen adsorption isotherms in a Sieverts' apparatus. By applying hydrogen and deuterium isotope mixture, cryogenic thermal desorption spectroscopy point to a Pt catalytic activity for the dissociation of hydrogen molecules. Furthermore, the hydrogen adsorption isotherms at RT indicate an enhancement of the initial hydrogen adsorption kinetics in Pt-doped system. However, the hydrogen storage capacity of Pt/TC exhibits a negligible enhancement with a strong hysteresis, suggesting no connection between the spillover effect and a feasible hydrogen storage enhancement. (C) 2013 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000322293000012 Publication Date 2013-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 25 Open Access (down)
Notes 262348 ESMI; COST Action MP1103 Approved Most recent IF: 3.615; 2013 IF: 3.209
Call Number UA @ lucian @ c:irua:109758 Serial 1532
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Hadermann, J.; Hodges, J.P.; Herber, R.H.; Nowik, I.; Greenblatt, M.;
Title Magnetic and structural studies of the multifunctional material SrFe0.75Mo0.25O3-\text{\textgreek{d}} Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 51 Issue 22 Pages 12273-12280
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract SrFe0.75Mo0.25O3-delta has been recently discovered as an extremely efficient electrode for intermediate temperature solid oxide fuel cells (IT-SOFCs). We have performed structural and magnetic studies to fully characterize this multifunctional material. We have observed by powder neutron diffraction (PND) and transmission electron microscopy (TEM) that its crystal symmetry is better explained with a tetragonal symmetry (I4/mcm space group) than with the previously reported orthorhombic symmetry (Pnma space group). The temperature dependent magnetic properties indicate an exceptionally high magnetic ordering temperature (T-N similar to 750 K), well above room temperature. The ordered magnetic structure at low temperature was determined by PND to be an antiferromagnetic coupling of the Fe cations. Mossbauer spectroscopy corroborated the PND results. A detailed study, with X-ray absorption spectroscopy (XAS), in agreement with the Mossbauer results, confirmed the formal oxidation states of the cations to be mixed valence Fe3+/4+ and Mo6+.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000311173700024 Publication Date 2012-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 12 Open Access (down)
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:105142 Serial 1862
Permanent link to this record
 

 
Author Verheyen, E.; Jo, C.; Kurttepeli, M.; Vanbutsele, G.; Gobechiya, E.; Korányi, T.I.; Bals, S.; Van Tendeloo, G.; Ryoo, R.; Kirschhock, C.E.A.; Martens, J.A.;
Title Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking Type A1 Journal article
Year 2013 Publication Journal of catalysis Abbreviated Journal J Catal
Volume 300 Issue Pages 70-80
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract MFI zeolite nanosheets with thickness of 2 and 8 nm were synthesized, transformed into bifunctional catalysts by loading with platinum and tested in n-decane isomerization and hydrocracking. Detailed analysis of skeletal isomers and hydrocracked products revealed that the MFI nanosheets display transition-state shape-selectivity similar to bulk MFI zeolite crystals. The suppressed formation of bulky skeletal isomers and C5 cracking products are observed both in the nanosheets and the bulk crystals grown in three dimensions. This is typical for restricted transition-state shape-selectivity, characteristic for the MFI type pores. It is a first clear example of transition-state shape-selectivity inside a zeolitic nanosheet. Owing to the short diffusion path across the sheets, expression of diffusion-based discrimination of reaction products in the MFI nanosheets was limited. The 2-methylnonane formation among monobranched C10 isomers and 2,7-dimethyloctane among dibranched C10 isomers, which in MFI zeolite are favored by product diffusion, was much less favored on the nanosheets compared to the reference bulk ZSM-5 material.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, Calif. Editor
Language Wos 000317558000009 Publication Date 2013-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 121 Open Access (down)
Notes Methusalem; IAP; Countatoms Approved Most recent IF: 6.844; 2013 IF: 6.073
Call Number UA @ lucian @ c:irua:106186 Serial 2181
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Chi, S.; Hodges, J.P.; Dachraoui, W.; Hadermann, J.; Tran, T.T.; Halasyamani, P.S.; Grams, C.P.; Hemberger, J.; Greenblatt, M.;
Title Polar and magnetic layered A-site and rock salt B-site-ordered NaLnFeWO6 (Ln = La, Nd) perovskites Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 21 Pages 12482-12491
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray absorption spectroscopy, dielectric measurements, and second harmonic generation. At room temperature, the crystal structures of both compounds can be defined in the noncentrosymmetric monoclinic P2(1) space group resulting from the combination of ordering both in the A and B sublattices, the distortion of the cell due to tilting of the octahedra, and the displacement of certain cations. The magnetic studies show that both compounds are ordered antiferromagnetically below T-N approximate to 25 K for NaLaFeWO6 and at similar to 21 K for NaNdFeWO6. The magnetic structure of NaNdFeWO6 has been solved with a propagation vector k = (1/2 0 1/2) as an antiferromagnetic arrangement of Fe and Nd moments. Although the samples are potential multiferroics, the dielectric measurements do not show a ferroelectric response.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000326669200035 Publication Date 2013-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 17 Open Access (down)
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:112714 Serial 2656
Permanent link to this record
 

 
Author Li, M.R.; Walker, D.; Retuerto, M.; Sarkar, T.; Hadermann, J.; Stephens, P.W.; Croft, M.; Ignatov, A.; Grams, C.P.; Hemberger, J.; Nowik, I.; Halasyamani, P.S.; Tran, T.T.; Mukherjee, S.; Dasgupta, T.S.; Greenblatt, M.;
Title Polar and magnetic Mn2FeMO6 (M=Nb, Ta) with LiNbO3-type structure : high-pressure synthesis Type A1 Journal article
Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue 32 Pages 8406-8410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000322631600044 Publication Date 2013-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 53 Open Access (down)
Notes Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number UA @ lucian @ c:irua:110749 Serial 2657
Permanent link to this record
 

 
Author Li, M.R.; Adem, U.; McMitchell, S.R.C.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; Schiffmann, F.; Cora, F.; Slater, B.; Burnett, T.L.; Cain, M.G.; Abakumov, A.M.; Van Tendeloo, G.; Thomas, M.F.; Rosseinsky, M.J.; Claridge, J.B.;
Title A polar corundum oxide displaying weak ferromagnetism at room temperature Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 8 Pages 3737-3747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K-this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301161600027 Publication Date 2012-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 48 Open Access (down)
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97200 Serial 2658
Permanent link to this record
 

 
Author Rouaiguia, L.; Djebli, M.; Peeters, F.
Title Random charge fluctuation effect on strongly correlated dust particles confined in two dimensions Type A1 Journal article
Year 2008 Publication Physics letters : A Abbreviated Journal Phys Lett A
Volume 372 Issue 24 Pages 4487-4492
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000257203700030 Publication Date 2008-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.772 Times cited 4 Open Access (down)
Notes Approved Most recent IF: 1.772; 2008 IF: 2.174
Call Number UA @ lucian @ c:irua:69627 Serial 2809
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Batenburg, K.J.; van Oers, C.; Kurttepeli, M.; Bals, S.; Cool, P.; Sijbers, J.
Title Reliable pore-size measurements based on a procedure specifically designed for electron tomography measurements of nanoporous samples Type P3 Proceeding
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:124548 Serial 2866
Permanent link to this record
 

 
Author Krsmanovic, R.; Morozov, V.A.; Lebedev, O.I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G.
Title Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis Type A1 Journal article
Year 2007 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 18 Issue 32 Pages 325604-325609
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)- doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia $(3) over bar $d) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd(3-x)Ln(x)Ga(5)O(12), x approximate to 0.3 ( Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+ -doped nanocrystalline GGG samples were measured and analysed.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000248231300010 Publication Date 2007-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 33 Open Access (down)
Notes Iap5-01 Approved Most recent IF: 3.44; 2007 IF: 3.310
Call Number UA @ lucian @ c:irua:104042 Serial 3195
Permanent link to this record
 

 
Author Krsmanovic, R.; Lebedev, O.I.; Speghini, A.; Bettinelli, M.; Polizzi, S.; Van Tendeloo, G.
Title Structural characterization and luminescence properties of nanostructured lanthanide-doped Sc2O3 prepared by propellant synthesis Type A1 Journal article
Year 2006 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 17 Issue 11 Pages 2805-2812
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000238250300038 Publication Date 2006-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 22 Open Access (down)
Notes IAP5-01; PRIN/Cofin Approved Most recent IF: 3.44; 2006 IF: 3.037
Call Number UA @ lucian @ c:irua:60046 Serial 3217
Permanent link to this record
 

 
Author Retuerto, M.; Emge, T.; Hadermann, J.; Stephens, P.W.; Li, M.R.; Yin, Z.P.; Croft, M.; Ignatov, A.; Zhang, S.J.; Yuan, Z.; Jin, C.; Simonson, J.W.; Aronson, M.C.; Pan, A.; Basov, D.N.; Kotliar, G.; Greenblatt, M.;
Title Synthesis and properties of charge-ordered thallium halide perovskites, CsTl0.5+Tl0.53+X3 (X = F or Cl) : theoretical precursors for superconductivity? Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 20 Pages 4071-4079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, CsTlCl3 and CsTlF3 perovskites were theoretically predicted to be potential superconductors if they were optimally doped. The syntheses of these two compounds together with a complete characterization of the samples are reported. CsTlCl3 was obtained as orange crystals in two different polymorphs: a tetragonal phase (I4/m) and a cubic phase (Fm (3) over barm). CsTlF3 was formed as a light brown powder, and also as a double cubic perovskite (Fm (3) over barm). In all three CsTlX3 phases, Tl+ and Tl3+ were located in two different crystallographic positions that accommodate their different bond lengths. In CsTlCl3, some Tl vacancies were found in the Tl+ position. The charge ordering between Tl+ and Tl3+ was confirmed by X-ray absorption and Raman spectroscopy. The Raman spectroscopy of CsTlCl3 at high pressure (58 GPa) did not indicate any phase transition to a possible single Tl2+ state. However, the highly insulating material became less resistive with an increasing high pressure, while it underwent a change in its optical properties, from transparent to deeply opaque red, indicative of a decrease in the magnitude of the band gap. The theoretical design and experimental validation of the existence of CsTlF3 and CsTlCl3 cubic perovskites are the necessary first steps in confirming the theoretical prediction of superconductivity in these materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000326209200017 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access (down)
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:112248 Serial 3434
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Bok Go, Y.; Emge, T.J.; Croft, M.; Ignatov, A.; Ramanujachary, K.V.; Dachraoui, W.; Hadermann, J.; Tang, M.B.; Zhao, J.T.; Greenblatt, M.;
Title Synthesis, crystal structure, and properties of KSbO3-type Bi3Mn1.9Te1.1O11 Type A1 Journal article
Year 2013 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 197 Issue Pages 543-549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Single crystals of Bi3Mn1.9Te1.1O11 were prepared from NaCl+KCl flux. This compound adopts KSbO3-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn0.63Te0.37)2O10 dimers and two identical (Bi1)4(Bi2)2 interpenetrating lattices. The intra-dimer Mn/TeMn/Te distances in Bi3Mn1.9Te1.1O11 are short and are consistent with weak metalmetal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi3(MnIII1.1MnIV0.8)TeVI1.1O11 with 57.7% Mn3+ and 42.3% Mn4+. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi3Mn3O11 (TC=150 K).
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000312281000076 Publication Date 2012-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 13 Open Access (down)
Notes Approved Most recent IF: 2.299; 2013 IF: 2.200
Call Number UA @ lucian @ c:irua:101779 Serial 3452
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.;
Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 27 Issue 27 Pages 2177-2181
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000352548900004 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 32 Open Access (down)
Notes Approved Most recent IF: 19.791; 2015 IF: 17.493
Call Number c:irua:126002 Serial 3545
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.;
Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 98-103
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700022 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 20 Open Access (down)
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113765 Serial 3603
Permanent link to this record
 

 
Author Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.;
Title Vibrational properties of epitaxial silicene layers on (111) Ag Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 113-117
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 x 4), (root 13 x root 13) and (2 root 3 x 2 root 3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag( 1 1 1). (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700025 Publication Date 2013-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 36 Open Access (down)
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113767 Serial 3843
Permanent link to this record
 

 
Author Kurttepeli, M.
Title Carbon based materials and hybrid nanostructures investigated by advanced transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130502 Serial 4145
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.;
Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 54 Issue 54 Pages 12069-12073
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000363396000031 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access (down)
Notes Approved Most recent IF: 11.994; 2015 IF: 11.261
Call Number UA @ lucian @ c:irua:129457 Serial 4186
Permanent link to this record
 

 
Author Retuerto, M.; Skiadopoulou, S.; Li, M.R.; Abakumov, A.M.; Croft, M.; Ignatov, A.; Sarkar, T.; Abbett, B.M.; Pokorný, J.; Savinov, M.; Nuzhnyy, D.; Prokleška, J.; Abeykoon, M.; Stephens, P.W.; Hodges, J.P.; Vaněk, P.; Fennie, C.J.; Rabe, K.M.; Kamba, S.; Greenblatt, M.;
Title Pb2MnTeO6 double perovskite : an antipolar anti-ferromagnet Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages 4320-4329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to similar to 120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s2 lone-pair electrons, together with a surprising off-centering of Mn2+ (d5) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN approximate to 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near similar to 150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000375519700027 Publication Date 2016-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 9 Open Access (down)
Notes Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:134219 Serial 4258
Permanent link to this record