|   | 
Details
   web
Records
Author Michel, K.H.; Çakir, D.; Sevik, C.; Peeters, F.M.
Title Piezoelectricity in two-dimensional materials : comparative study between lattice dynamics and ab initio calculations Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 125415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The elastic constant C-11 and piezoelectric stress constant e(1),(11) of two-dimensional (2D) dielectric materials comprising h-BN, 2H-MoS2, and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000396013400005 Publication Date 2017-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access (down)
Notes ; The authors acknowledge useful discussions with L. Wirtz and A. Molina-Sanchez. This work was supported by the Methusalem program and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142444 Serial 4603
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title Quantum transport in graphene Hall bars : effects of side gates Type A1 Journal article
Year 2017 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 257 Issue 257 Pages 20-26
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000401101400005 Publication Date 2017-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.554 Times cited Open Access (down)
Notes ; This work was supported by the Methusalem programme of the Flemish government. One of us (F. M. Peeters) acknowledges correspondence with K. Novoselov. ; Approved Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:143761 Serial 4604
Permanent link to this record
 

 
Author Petrovic, M.D.; Milovanović, S.P.; Peeters, F.M.
Title Scanning gate microscopy of magnetic focusing in graphene devices : quantum versus classical simulation Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 28 Pages 185202
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Buttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000399273800001 Publication Date 2017-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 7 Open Access (down)
Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:143639 Serial 4607
Permanent link to this record
 

 
Author De Beule, C.; Zarenia, M.; Partoens, B.
Title Transmission in graphene-topological insulator heterostructures Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 115424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the (111) surface of a Bi2Se3-like topological insulator. We present a low-energy model for the graphene-topological insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can be understood from antiresonances in the transmission probability.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399216700004 Publication Date 2017-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access (down)
Notes ; The authors would like to thank B. Van Duppen for interesting discussions. This work was supported by the Flemish Research Foundation (FWO) through the Aspirant Fellowship of Christophe De Beule. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:143652 Serial 4609
Permanent link to this record
 

 
Author de Sousa, G.O.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 205414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effects of external electric and magnetic fields on the energy spectrum of quantum rings made out of a bidimensional semiconductor material with anisotropic band structures are investigated within the effective-mass model. The interplay between the effective-mass anisotropy and the radial confinement leads to wave functions that are strongly localized at two diametrically opposite regions where the kinetic energy is lowest due to the highest effective mass. We show that this quantum phenomenon has clear consequences on the behavior of the energy states in the presence of applied in-plane electric fields and out-of-plane magnetic fields. In the former, the quantum confined Stark effect is observed with either linear or quadratic shifts, depending on the direction of the applied field. As for the latter, the usual Aharonov-Bohm oscillations are not observed for a circularly symmetric confining potential, however they can be reinstated if an elliptic ring with an appropriate aspect ratio is chosen.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000401230600007 Publication Date 2017-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access (down)
Notes ; This work was financially supported by CNPq under the PRONEX/FUNCAP grants, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:143746 Serial 4610
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M.
Title Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 115438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399141200003 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access (down)
Notes ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142428 Serial 4613
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Tempère, J.; Kong, M.; Peeters, F.M.
Title Artificial living crystals in confined environment Type A1 Journal article
Year 2017 Publication Physical Review E Abbreviated Journal Phys Rev E
Volume 95 Issue 6 Pages 062602
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals” can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals” are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells” formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402667600006 Publication Date 2017-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 10 Open Access (down)
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Research Foundation (FWO-Vl) (Belgium), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), and the Research Fund of the University of Antwerp. W.Y. acknowledges the support from the National Natural Science Foundation of China under Grants No. 11204199 and No. 51135007, the China Scholarship Council, the 131 project and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and a project under Grant No. 2016-096 by Shanxi Scholarship Council of China. ; Approved Most recent IF: 2.366
Call Number UA @ lucian @ c:irua:144205 Serial 4641
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B.
Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume 32 Issue 6 Pages 065016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402405800007 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.305 Times cited Open Access (down)
Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305
Call Number UA @ lucian @ c:irua:144238 Serial 4646
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 8 Pages 085702
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000403100700001 Publication Date 2017-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 32 Open Access (down)
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:144325 Serial 4648
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Vasilopoulos, P.; Peeters, F.M.
Title Graphene quantum dot with a Coulomb impurity : subcritical and supercritical regime Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 24 Pages 245410
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the influence of confinement on the atomic collapse due to a Coulomb impurity placed at the center of a graphene quantum dot of radius R. We apply the zigzag or infinite-mass boundary condition and consider both a point-size and a finite-size impurity. As a function of the impurity strength Za, the energy spectra are discrete. In the case of the zigzag boundary condition, the degenerate (with respect to the angular momentum m) zero-energy levels are pulled down in energy as Z alpha increases, and they remain below epsilon = – Z alpha. Our results show that the energy levels exhibit a 1/R dependence in the subcritical regime [Z alpha < |km + 1/2|, k = 1 (-1) for the K (K') valley]. In the supercritical regime (Z alpha > |km + 1/2|) we find a qualitatively very different behavior where the levels decrease as a function of R in a nonmonotonic manner. While the valley symmetry is preserved in the presence of the impurity, we find that the impurity breaks electron-hole symmetry. We further study the energy spectrum of zigzag quantum dots in gapped graphene. Our results show that as the gap increases, the lowest electron states are pushed into the gap by the impurity.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000403072400005 Publication Date 2017-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access (down)
Notes ; We thank Massoud Ramezani-Masir and Dean Moldovan for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem funding of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756 (P. V.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144197 Serial 4661
Permanent link to this record
 

 
Author Houben, K.; Couet, S.; Trekels, M.; Menendez, E.; Peissker, T.; Seo, J.W.; Hu, M.Y.; Zhao, J.Y.; Alp, E.E.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Bessas, D.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title Lattice dynamics in Sn nanoislands and cluster-assembled films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 15 Pages 155413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To unravel the effects of phonon confinement, the influence of size and morphology on the atomic vibrations is investigated in Sn nanoislands and cluster-assembled films. Nuclear resonant inelastic x-ray scattering is used to probe the phonon densities of states of the Sn nanostructures which show significant broadening of the features compared to bulk phonon behavior. Supported by ab initio calculations, the broadening is attributed to phonon scattering and can be described within the damped harmonic oscillator model. Contrary to the expectations based on previous research, the appearance of high-energy modes above the cutoff energy is not observed. From the thermodynamic properties extracted from the phonon densities of states, it was found that grain boundary Sn atoms are bound by weaker forces than bulk Sn atoms.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000401762400008 Publication Date 2017-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access (down)
Notes ; This work was supported by the Research Foundation-Flanders (FWO) and the Concerted Research Action (GOA/14/007). The authors acknowledge Hercules stichting (Projects No. AKUL/13/19 and No. AKUL/13/25). K.H. and S.C. thank the FWO for financial support. T.P. acknowledges the IWT for financial support. S.R., M.V.M., and B.P. acknowledge TOPBOF funding of the University of Antwerp Research Fund. J.W.S. acknowledges Hercules Stichting (Project No. AKUL/13/19). The authors want to thank R. Lieten for help with the XRD measurements and T. Picot for fruitful discussions. The authors gratefully acknowledge R. Ruffer and A. I. Chumakov for fruitful discussions and the European Synchrotron Radiation Facility for the measurement of the SnO<INF>2</INF> powder at the Nuclear Resonance beamline (ID-18). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144305 Serial 4667
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P.
Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv
Volume 7 Issue 5 Pages 056020
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000402797100177 Publication Date 2017-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.568 Times cited 13 Open Access (down)
Notes ; ; Approved Most recent IF: 1.568
Call Number UA @ lucian @ c:irua:144288 Serial 4673
Permanent link to this record
 

 
Author Van Laer, K.
Title Numerical and experimental study of a packed bed plasma reactor for environmental applications Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144061 Serial 4675
Permanent link to this record
 

 
Author Snoeckx, R.
Title Plasma technology : a novel solution for CO2 conversion? Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143110 Serial 4680
Permanent link to this record
 

 
Author Alania, M.
Title Quantification of 3D atomic positions for nanoparticles using scanning transmission electron microscopy: statistical parameter estimation, dose-limited precision and optimal experimental design Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144014 Serial 4682
Permanent link to this record
 

 
Author Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue 19 Pages 193101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000402319200036 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access (down)
Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:144279 Serial 4690
Permanent link to this record
 

 
Author Huygh, S.
Title Towards a fundamental understanding of plasma : TiO2 catalyst interaction for greenhouse gas conversion Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Universiteit Antwerpen Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143954 Serial 4698
Permanent link to this record
 

 
Author Paria Sena, R.
Title Structure characterization of triple perovskites and related systems by transmission electron microscopy Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141621 Serial 4511
Permanent link to this record
 

 
Author Meledin, A.
Title Nanostructure of superconducting tapes : a study by electron microscopy Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerp Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141625 Serial 4505
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M.
Title Excitons and trions in monolayer transition metal dichalcogenides : a comparative study between the multiband model and the quadratic single-band model Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035131
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single- band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single- band model when (interband) interactions are strong.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405706600005 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access (down)
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145209 Serial 4716
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume 4 Issue 3 Pages 035025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000406926600001 Publication Date 2017-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 13 Open Access (down)
Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:145151 Serial 4717
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
Title Graphene membrane as a pressure gauge Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 043101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700035 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 11 Open Access (down)
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Embon, L.; Anahory, Y.; Jelić, Z.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; Zeldov, E.
Title Imaging of super-fast dynamics and flow instabilities of superconducting vortices Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue Pages 85
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405900400002 Publication Date 2017-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 124 Open Access (down)
Notes ; We would like to thank M.L. Rappaport for fruitful discussions and technical support. This work was supported by the US-Israel Binational Science Foundation (BSF) grant No. 2014155 and the Israel Science Foundation grant No. 132/14. A.G. was also supported by the United States Department of Energy under Grant No. DE-SC0010081. M.V.M. acknowledges support from Research Foundation-Flanders (FWO). The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. This work benefited from the support of COST action MP-1201. ; Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:144832 Serial 4720
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Leenaerts, O.; Liu, X.-J.; Peeters, F.M.
Title New group-V elemental bilayers : a tunable structure model with four-, six-, and eight-atom rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035123
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four-and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405363900005 Publication Date 2017-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access (down)
Notes ; This work is supported by Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), National Natural Science Foundation of China (NSFC) ( No. 11574008), the Thousand-Young-Talent Program of China, and the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144834 Serial 4721
Permanent link to this record
 

 
Author Magnus, W.; Lemmens, L.; Brosens, F.
Title Quantum canonical ensemble : a projection operator approach Type A1 Journal article
Year 2017 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A
Volume 482 Issue Pages 1-13
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function Z(N) and the Helmholtz free energy F-N as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 – F-N, as illustrated for a two-dimensional fermion gas. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000405885500001 Publication Date 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.243 Times cited 1 Open Access (down)
Notes ; ; Approved Most recent IF: 2.243
Call Number UA @ lucian @ c:irua:145145 Serial 4722
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P.
Title Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions Type A1 Journal article
Year 2017 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 96 Issue 1 Pages 012603
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405713900014 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access (down)
Notes ; This work was supported by the Brazilian agencies FUNCAP, CAPES, program Science without borders, and CNPq (Project No. 400748/2013-4), the joint CNPq-FWO bilateral project, and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 2.366
Call Number UA @ lucian @ c:irua:145210 Serial 4723
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M.
Title Spatial design and control of graphene flake motion Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 6 Pages 060101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406860300001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access (down)
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145166 Serial 4724
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L.
Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
Year 2017 Publication Science Abbreviated Journal Science
Volume 357 Issue 6347 Pages 187-190
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000405391700042 Publication Date 2017-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 87 Open Access (down)
Notes ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205
Call Number UA @ lucian @ c:irua:144833 Serial 4730
Permanent link to this record
 

 
Author Zanaga, D.
Title Advanced algorithms for quantitative electron tomography Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (down)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:146571 Serial 4736
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.
Title Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 11 Pages 115402
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h-BN, and Al2O3. We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Frohlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000408826200004 Publication Date 2017-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access (down)
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145665 Serial 4737
Permanent link to this record