toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Bulut, P.; Beceren, B.; Yildirim, S.; Sevik, C.; Gurel, T.
  Title Promising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
  Volume 33 Issue 1 Pages 015501
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The theoretical investigation on structural, vibrational, and electronic properties of zinc-blende (ZB) AgI were carried out employing first principles density functional theory calculations. Thermoelectric properties then were predicted through semi-classical Boltzmann transport equations within the constant relaxation time approximation. Equilibrium lattice parameter, bulk modulus, elastic constants, and vibrational properties were calculated by using generalized gradient approximation. Calculated properties are in good agreement with available experimental values. Electronic and thermoelectric properties were investigated both with and without considering spin-orbit coupling (SOC) effect which is found to have a strong influence on p-type Seebeck coefficient as well as the power factor of the ZB-AgI. By inclusion of SOC, a reduction of the band-gap and p-type Seebeck coefficients as well as the power factor was found which is the indication of that spin-orbit interaction cannot be ignored for p-type thermoelectric properties of the ZB-AgI. By using deformation potential theory for electronic relaxation time and experimentally predicted lattice thermal conductivity, we obtained aZTvalue 1.69 (0.89) at 400 K for n-type (p-type) carrier concentration of 1.5 x 10(18)(4.6 x10(19)) cm(-3)that makes ZB-AgI as a promising room temperature thermoelectric material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000577217600001 Publication Date 2020-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
  Impact Factor 2.649 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.649
  Call Number (down) UA @ admin @ c:irua:193762 Serial 8425
Permanent link to this record
 

 
Author Kocabas, T.; Cakir, D.; Sevik, C.
  Title First-principles discovery of stable two-dimensional materials with high-level piezoelectric response Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
  Volume 33 Issue 11 Pages 115705
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The rational design of two-dimensional (2D) piezoelectric materials has recently garnered great interest due to their increasing use in technological applications, including sensor technology, actuating devices, energy harvesting, and medical applications. Several materials possessing high piezoelectric response have been reported so far, but a high-throughput first-principles approach to estimate the piezoelectric potential of layered materials has not been performed yet. In this study, we systematically investigated the piezoelectric (e(11), d(11)) and elastic (C-11 and C-12) properties of 128 thermodynamically stable 2D semiconductor materials by employing first-principle methods. Our high-throughput approach demonstrates that the materials containing Group-V elements produce significantly high piezoelectric strain constants, d(11) > 40 pm V-1, and 49 of the materials considered have the e(11) coefficient higher than MoS2 insomuch as BrSSb has one of the largest d(11) with a value of 373.0 pm V-1. Moreover, we established a simple empirical model in order to estimate the d(11) coefficients by utilizing the relative ionic motion in the unit cell and the polarizability of the individual elements in the compounds.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000605852800001 Publication Date 2020-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.649
  Call Number (down) UA @ admin @ c:irua:193761 Serial 7971
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D.
  Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
  Year 2019 Publication ACS applied energy materials Abbreviated Journal
  Volume 2 Issue 2 Pages 1251-1258
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000459948900037 Publication Date 2019-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number (down) UA @ admin @ c:irua:193759 Serial 7414
Permanent link to this record
 

 
Author Sevik, C.; Çakir, D.
  Title Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/Graphene Heterostructures by Functionalization of Graphene Type A1 Journal article
  Year 2019 Publication Physical review applied Abbreviated Journal
  Volume 12 Issue 1 Pages 014001
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using first-principles calculations, we evaluate the electrochemical performance of heterostructures made up of Ti2CO2 and chemically modified graphene for Li batteries. We find that heteroatom doping and molecule intercalation have a significant impact on the storage capacity and Li migration barrier energies. While N and S doping do not improve the storage capacity, B doping together with molecule interaction make it possible to intercalate two layers of Li, which stick separately to the surface of Ti2CO2 and B-doped graphene. The calculated diffusion-barrier energies (E-diff), which are between 0.3 and 0.4 eV depending on Li concentration, are quite promising for fast charge and discharge rates. Besides, the predicted E-diff as much as 2 eV for the diffusion of the Li atom from the Ti2CO2 surface to the B-doped graphene surface significantly suppresses the interlayer Li migration, which diminishes the charge and discharge rates. The calculated volume and lattice parameter changes indicate that Ti2CO2/graphene hybrid structures exhibit cyclic stability against Li loading and unloading. Consequently, first-principles calculations we perform evidently highlight the favorable effect of molecular intercalation on the capacity improvement of ion batteries.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000473312000001 Publication Date 2019-07-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number (down) UA @ admin @ c:irua:193755 Serial 8640
Permanent link to this record
 

 
Author Yorulmaz, U.; Demiroglu, I.; Cakir, D.; Gulseren, O.; Sevik, C.
  Title A systematicalab-initioreview of promising 2D MXene monolayers towards Li-ion battery applications Type A1 Journal article
  Year 2020 Publication JPhys Energy Abbreviated Journal
  Volume 2 Issue 3 Pages 032006
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Two-dimensional materials have been attracting increasing interests because of their outstanding properties for Lithium-ion battery applications. In particular, a material family called MXenes (Mn+1Cn, where n = 1, 2, 3) have been recently attracted immense interest in this respect due to their incomparable fast-charging properties and high capacity promises. In this article, we review the state-of-the-art computational progress on Li-ion battery applications of MXene materials in accordance with our systematical DFT calculations. Structural, mechanical, dynamical, and electrical properties of 20 distinct MXene (M: Sc, Ti, V, Cr, Nb, Mo, Hf, Ta, W, and Zr) have been discussed. The battery performances of these MXene monolayers are further investigated by Li-ion binding energies, open circuit voltage values, and Li migration energy barriers. The experimental and theoretical progress up to date demonstrates particularly the potential of non-terminated or pristine MXene materials in Li ion-storage applications. Stability analyses show most of the pristine MXenes should be achievable, however susceptible to the development progress on the experimental growth procedures. Among pristine MXenes, Ti2C, V2C, Sc2C, and Zr2C compounds excel with their high charge/discharge rate prospect due to their extremely low Li diffusion energy barriers. Considering also their higher predicted gravimetric capacities, Sc, Ti, V, and Zr containing MXenes are more promising for their utilization in energy storage applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000569868600001 Publication Date 2020-07-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2515-7655 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.9 Times cited Open Access
  Notes Approved Most recent IF: 6.9; 2020 IF: NA
  Call Number (down) UA @ admin @ c:irua:193748 Serial 7399
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X.
  Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume Issue Pages 1-9
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000903664200001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 29.4 Times cited 1 Open Access OpenAccess
  Notes Approved Most recent IF: 29.4
  Call Number (down) UA @ admin @ c:irua:193500 Serial 7328
Permanent link to this record
 

 
Author Andelkovic, M.; Rakhimov, K.Y.; Chaves, A.; Berdiyorov, G.R.; Milošević, M.V.
  Title Wave-packet propagation in a graphene geometric diode Type A1 Journal article
  Year 2023 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal
  Volume 147 Issue Pages 115607-4
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Dynamics of electron wave-packets is studied using the continuum Dirac model in a graphene geometric diode where the propagation of the wave packet is favored in certain direction due to the presence of geometric constraints. Clear rectification is obtained in the THz frequency range with the maximum rectification level of 3.25, which is in good agreement with recent experiments on graphene ballistic diodes. The rectification levels are considerably higher for systems with narrower channels. In this case, the wave packet transmission probabilities and rectification rate also strongly depend on the energy of the incident wave packet, as a result of the quantum nature of energy levels along such channels. These findings can be useful for fundamental understanding of the charge carrier dynamics in graphene geometry diodes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000903737000003 Publication Date 2022-12-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited 1 Open Access OpenAccess
  Notes Approved Most recent IF: 3.3; 2023 IF: 2.221
  Call Number (down) UA @ admin @ c:irua:193497 Serial 7351
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Neilson, D.; Tempère, J.; Perali, A.
  Title Josephson effect as a signature of electron-hole superfluidity in bilayers of van der Waals heterostructures Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 106 Issue 22 Pages L220503-6
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
  Abstract We investigate a Josephson junction in an electron-hole superfluid in a double-layer transition metal dichalco-genide heterostructure. The observation of a critical tunneling current is a clear signature of superfluidity. In addition, we find the BCS-BEC crossover physics in the narrow barrier region controls the critical current across the entire system. The corresponding critical velocity, which is measurable in this system, has a maximum when the excitations pass from bosonic to fermionic. Remarkably, this occurs for the density at the boundary of the BEC to BCS-BEC crossover regime determined from the condensate fraction. This provides, in a semiconductor system, an experimental way to determine the position of this boundary.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000903924400007 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.7
  Call Number (down) UA @ admin @ c:irua:193402 Serial 7316
Permanent link to this record
 

 
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I.
  Title Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 35 Issue 8 Pages 085301-85311
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000899825400001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
  Impact Factor 2.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
  Call Number (down) UA @ admin @ c:irua:193399 Serial 7313
Permanent link to this record
 

 
Author Nulens, L.; Dausy, H.; Wyszynski, M.J.; Raes, B.; Van Bael, M.J.; Milošević, M.V.; Van de Vondel, J.
  Title Metastable states and hidden phase slips in nanobridge SQUIDs Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 106 Issue 13 Pages 134518-134519
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current (so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic in nature, does not necessarily coincide with the current associated with the lowest energy state and critically depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover, we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000904657300007 Publication Date 2022-10-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess
  Notes Approved Most recent IF: 3.7
  Call Number (down) UA @ admin @ c:irua:193393 Serial 7321
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 13 Issue 49 Pages 11454-11463
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000893147700001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
  Impact Factor 5.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.7
  Call Number (down) UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Yagmurcukardes, M.; Sevik, C.; Milošević, M.V.
  Title High-throughput analysis of tetragonal transition metal Xenes Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 24 Issue 48 Pages 29406-29412
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report a high-throughput first-principles characterization of the structural, mechanical, electronic, and vibrational properties of tetragonal single-layer transition metal Xenes (t-TMXs). Our calculations revealed 22 dynamically, mechanically and chemically stable structures among the 96 possible free-standing layers present in the t-TMX family. As a fingerprint for their structural identification, we identified four characteristic Raman active phonon modes, namely three in-plane and one out-of-plane optical branches, with various intensities and frequencies depending on the material in question. Spin-polarized electronic calculations demonstrated that anti-ferromagnetic (AFM) metals, ferromagnetic (FM) metals, AFM semiconductors, and non-magnetic semiconductor materials exist within this family, evidencing the potential of t-TMXs for further use in multifunctional heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000892446100001 Publication Date 2022-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.3
  Call Number (down) UA @ admin @ c:irua:192762 Serial 7310
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.; Barry, D.; Xin, B.; Huang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
  Title Photoaccelerated water dissociation across one-atom-thick electrodes Type A1 Journal article
  Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 22 Issue 23 Pages 9566-9570
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000892112200001 Publication Date 2022-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.8 Times cited 3 Open Access OpenAccess
  Notes Approved Most recent IF: 10.8
  Call Number (down) UA @ admin @ c:irua:192759 Serial 7330
Permanent link to this record
 

 
Author McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V.
  Title Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
  Volume 12 Issue 22 Pages 4043-18
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Understanding the behaviour of vortices under nanoscale confinement in superconducting circuits is important for the development of superconducting electronics and quantum technologies. Using numerical simulations based on the Ginzburg-Landau theory for non-homogeneous superconductivity in the presence of magnetic fields, we detail how lateral confinement organises vortices in a long superconducting nanostripe, presenting a phase diagram of vortex configurations as a function of the stripe width and magnetic field. We discuss why the average vortex density is reduced and reveal that confinement influences vortex dynamics in the dissipative regime under sourced electrical current, mapping out transitions between asynchronous and synchronous vortex rows crossing the nanostripe as the current is varied. Synchronous crossings are of particular interest, since they cause single-mode modulations in the voltage drop along the stripe in a high (typically GHz to THz) frequency range.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000887683200001 Publication Date 2022-11-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.3 Times cited 2 Open Access OpenAccess
  Notes Approved Most recent IF: 5.3
  Call Number (down) UA @ admin @ c:irua:192731 Serial 7286
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
  Title Clogging, diode and collective effects of skyrmions in funnel geometries Type A1 Journal article
  Year 2022 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 24 Issue 10 Pages 103030-14
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using a particle-based model, we examine the collective dynamics of skyrmions interacting with a funnel potential under dc driving as the skyrmion density and relative strength of the Magnus and damping terms are varied. For driving in the easy direction, we find that increasing the skyrmion density reduces the average skyrmion velocity due to jamming of skyrmions near the funnel opening, while the Magnus force causes skyrmions to accumulate on one side of the funnel array. For driving in the hard direction, there is a critical skyrmion density below which the skyrmions become trapped. Above this critical value, a clogging effect appears with multiple depinning and repinning states where the skyrmions can rearrange into different clogged configurations, while at higher drives, the velocity-force curves become continuous. When skyrmions pile up near the funnel opening, the effective size of the opening is reduced and the passage of other skyrmions is blocked by the repulsive skyrmion-skyrmion interactions. We observe a strong diode effect in which the critical depinning force is higher and the velocity response is smaller for hard direction driving. As the ratio of Magnus force to dissipative term is varied, the skyrmion velocity varies in a non-linear and non-monotonic way due to the pile up of skyrmions on one side of the funnels. At high Magnus forces, the clogging effect for hard direction driving is diminished.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000873333400001 Publication Date 2022-10-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.3
  Call Number (down) UA @ admin @ c:irua:192178 Serial 7287
Permanent link to this record
 

 
Author Seyedmohammadzadeh, M.; Sevik, C.; Guelseren, O.
  Title Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal
  Volume 6 Issue 10 Pages 104004-104013
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Two-dimensional heterostructures are an emerging class of materials for novel applications because of extensive engineering potential by tailoring intriguing properties of different layers as well as the ones arising from their interface. A systematic investigation of mechanical, electronic, and optical properties of possible heterostructures formed by bilayer structures graphenelike ZnO and MgO monolayers is presented. Different functionality of each layer makes these heterostructures very appealing for device applications. ZnO layer is convenient for electron transport in these structures, while MgO layer improves electron collection. At the outset, all of the four possible stacking configurations across the heterostructure are mechanically stable. In addition, stability analysis using phonon dispersion reveals that the AB stacking formed by placing the Mg atom on top of the O atom of the ZnO layer is also dynamically stable at zero temperature. Henceforth, we have investigated the optical properties of these stable heterostructures by applying many-body perturbation theory within the framework of GW approximation and solving the Bethe-Salpeter equation. It is demonstrated that strong excitonic effects reduce the optical band gap to the visible light spectrum range. These results show that this new two-dimensional form of ZnO/MgO heterostructures open an avenue for novel optoelectronic device applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000877514900005 Publication Date 2022-10-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.4
  Call Number (down) UA @ admin @ c:irua:192167 Serial 7346
Permanent link to this record
 

 
Author Gobato, Y.G.; de Brito, C.S.; Chaves, A.; Prosnikov, M.A.; Wozniak, T.; Guo, S.; Barcelos, I.D.; Milošević, M.V.; Withers, F.; Christianen, P.C.M.
  Title Distinctive g-factor of Moire-confined excitons in van der Waals heterostructures Type A1 Journal article
  Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 22 Issue 21 Pages 8641-8641
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We investigated the valley Zeeman splitting of excitonic peaks in the microphotoluminescence (mu PL) spectra of high-quality hBN/WS2/MoSe2/hBN heterostructures under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the mu PL spectra; the lower-energy peak exhibits a reduced g-factor relative to that of the higher energy peak and much lower than the recently reported values for interlayer excitons in other van der Waals (vdW) heterostructures. We provide evidence that such a discernible g-factor stems from the spatial confinement of the exciton in the potential landscape created by the moire pattern due to lattice mismatch or interlayer twist in heterobilayers. This renders magneto-mu PL an important tool to reach a deeper understanding of the effect of moire patterns on excitonic confinement in vdW heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000877287800001 Publication Date 2022-10-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.8 Times cited 3 Open Access OpenAccess
  Notes Approved Most recent IF: 10.8
  Call Number (down) UA @ admin @ c:irua:192166 Serial 7298
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L.
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal
  Volume 28 Issue Pages 100881-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000876484300002 Publication Date 2022-10-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.5 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 11.5
  Call Number (down) UA @ admin @ c:irua:192139 Serial 7329
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
  Title Magnus induced diode effect for skyrmions in channels with periodic potentials Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 35 Issue 1 Pages 015804-15810
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for -x direction driving and the lower wall for +x direction driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for -x direction driving and the skyrmion velocity depends linearly on the drive. For +x direction driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under -x direction driving, and become strongly trapped for +x direction driving. The preferred -x direction motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000880827900001 Publication Date 2022-10-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
  Call Number (down) UA @ admin @ c:irua:192031 Serial 7320
Permanent link to this record
 

 
Author Miranda, L.P.; da Costa, D.R.; Peeters, F.M.; Costa Filho, R.N.
  Title Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons Type A1 Journal article
  Year 2023 Publication Nanotechnology Abbreviated Journal
  Volume 34 Issue 5 Pages 055706-55710
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Experimental realizations of two-dimensional materials are hardly free of structural defects such as e.g. vacancies, which, in turn, modify drastically its pristine physical defect-free properties. In this work, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evident vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of the inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000886630000001 Publication Date 2022-11-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.5 Times cited 1 Open Access OpenAccess
  Notes Approved Most recent IF: 3.5; 2023 IF: 3.44
  Call Number (down) UA @ admin @ c:irua:192030 Serial 7350
Permanent link to this record
 

 
Author Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; Yan, H.
  Title Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
  Volume 12 Issue 1 Pages 5628
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of similar to 452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000698984500003 Publication Date 2021-10-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 12.124
  Call Number (down) UA @ admin @ c:irua:191688 Serial 8404
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 13 Issue 1 Pages 5776-5777
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000862552600012 Publication Date 2022-10-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.6 Times cited 14 Open Access OpenAccess
  Notes Approved Most recent IF: 16.6
  Call Number (down) UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G.
  Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
  Year 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron
  Volume 198 Issue Pages 108458-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000876289800003 Publication Date 2022-09-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.7 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.7
  Call Number (down) UA @ admin @ c:irua:191556 Serial 7312
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 121 Issue 11 Pages 112405-112407
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000863219400003 Publication Date 2022-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4 Times cited 4 Open Access OpenAccess
  Notes Approved Most recent IF: 4
  Call Number (down) UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
  Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
  Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl
  Volume 18 Issue 3 Pages 034064-34069
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000870234200001 Publication Date 2022-09-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.6 Times cited 9 Open Access OpenAccess
  Notes Approved Most recent IF: 4.6
  Call Number (down) UA @ admin @ c:irua:191539 Serial 7307
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C.
  Title Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal
  Volume 201 Issue Pages 734-744
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000868911500004 Publication Date 2022-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 3 Open Access Not_Open_Access
  Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
  Call Number (down) UA @ admin @ c:irua:191516 Serial 7302
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V.
  Title Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
  Year 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys
  Volume 94 Issue 3 Pages 035005-35061
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000861559900001 Publication Date 2022-09-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 44.1 Times cited 12 Open Access OpenAccess
  Notes Approved Most recent IF: 44.1
  Call Number (down) UA @ admin @ c:irua:191507 Serial 7339
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
  Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
  Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 144 Issue Pages 115428-6
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000857051700007 Publication Date 2022-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.3
  Call Number (down) UA @ admin @ c:irua:191500 Serial 7148
Permanent link to this record
 

 
Author de Paula Miranda, L.
  Title Electronic transport in two dimensional systems with defects Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal
  Volume Issue Pages 104 p.
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)
  Abstract The pursuit for the next generation of nanodevices made scientists focus the attention to two dimensional materials. Experimental works of two dimensional materials are hardly free of structural defects, which, in turn, modify drastically the physical properties of its defect-free counterpart. In this work the presence of structural defects is study in two different materials. First, the dependence of the Hall, bend and longitudinal resistances to a perpendicular magnetic field and to vacancy defects in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model in combination with the Landauer-Büttiker formalism is used to calculate the energy spectrum, the lead-to-lead transmissions, and the Hall and bend resistances of the system. It is shown that the terminals with zigzag edge orientation are responsible for the absence of quantized plateaus in the Hall resistance and peaks in the longitudinal resistance. A negative bend resistance in the ballistic regime is found due to the presence of high- and low- energy transport modes in the armchair and zigzag terminals, respectively. The system density of states, with single vacancy defects, shows that the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus in the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of vacancies in the regime where the quantized plateaus are destroyed and a diffusive regime appears in the bend resistance are investigated. Next, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evidence of vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number (down) UA @ admin @ c:irua:191340 Serial 7151
Permanent link to this record
 

 
Author Menezes, R.M.; Sardella, E.; Cabral, L.R.E.; de Souza Silva, C.C.
  Title Self-assembled vortex crystals induced by inhomogeneous magnetic textures Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 31 Issue 17 Pages 175402
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the self-assembly of vortices in a type-II superconducting disk subjected to highly nonuniform confining potentials produced by inhomogeneous magnetic textures. Using a series of numerical experiments performed within the Ginzburg–Landau theory, we show that vortices can arrange spontaneously in highly nonuniform, defect-free crystals, reminiscent of conformal lattices, even though the strict conditions for the conformal crystal are not fulfilled. These results contradict continuum-limit theory, which predicts that the order of a nonuniform crystal is unavoidably frustrated by the presence of topological defects. By testing different cooling routes of the superconductor, we observed several different self-assembled configurations, each of which corresponding to one in a set of allowed conformal transformations, which depends on the magnetic and thermal histories of the system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2019-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number (down) UA @ admin @ c:irua:191094 Serial 8511
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: