toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arts, I.; Saniz, R.; Baldinozzi, G.; Leinders, G.; Verwerft, M.; Lamoen, D. pdf  url
doi  openurl
  Title Ab initio study of the adsorption of O, O2, H2O and H2O2 on UO2 surfaces using DFT+U and non-collinear magnetism Type A1 Journal Article
  Year 2024 Publication Journal of Nuclear Materials Abbreviated Journal Journal of Nuclear Materials  
  Volume 599 Issue Pages 155249  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In order to model correctly the corrosion of spent nuclear fuel under disposal conditions, it is important to understand its behavior in the presence of oxidants. To advance in this direction, we consider the oxidation of UO2. We investigate computationally the adsorption of various species on its three most stable surfaces: (111), (110), and (100), with emphasis on incorporating a full non-collinear PBE+U approach. Various species, namely O, O2, H2O and H2O2 are considered due to their relevance for the oxidation of UO2. The dissociation energy and an estimate for the dissociation barrier for O2 were obtained, using the preferred adsorption configurations of O and O2. The adsorption configurations for H2O in our study compare well with previous studies that used collinear approximations, both in terms of relative stability of configurations and bond lengths. Differences in adsorption energies were found, which may be important for reaction kinetics. Dissociative reactions in which the water molecule splits in hydrogen and hydroxyl occur only on one of the three surfaces. The hydrogen further reacts with a surface oxygen to also form a hydroxyl group. Not surprisingly, we find that H2O2 binds more strongly to the three surfaces than water (lower formation energy), and similar to H2O adsorption, dissociative reactions may occur. The dissociated hydrogen reacts with a surface oxygen to form a hydroxyl group and the hydroperoxyl molecule binds with a surface uranium. Our study, which includes a detailed study of electron transfer, magnetic structure and the preferred adsorption configurations, gives insight into the uranium oxidation states and the influence of surface geometry on adsorption. The findings contribute to a more comprehensive understanding of the early stages of UO2 oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001262 Publication Date 2024-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 3.1 Times cited Open Access  
  Notes Financial support for this research was provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD: Spent Fuel – Corrosion modeling). This work was performed using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.1; 2024 IF: 2.048  
  Call Number (down) EMAT @ emat @c:irua:207055 Serial 9249  
Permanent link to this record
 

 
Author Leinders, G.; Grendal, O.G.; Arts, I.; Bes, R.; Prozheev, I.; Orlat, S.; Fitch, A.; Kvashnina, K.; Verwerft, M. pdf  url
doi  openurl
  Title Refinement of the uranium dispersion corrections from anomalous diffraction Type A1 Journal article
  Year 2024 Publication Journal of applied crystallography Abbreviated Journal J Appl Cryst  
  Volume 57 Issue 2 Pages 284-295  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The evolution of the uranium chemical state in uranium compounds, principally in the oxides, is of concern in the context of nuclear fuel degradation under storage and repository conditions, and in accident scenarios. The U–O system shows complicated phase relations between single-valence uranium dioxide (UO<sub>2</sub>) and different mixed-valence compounds (<italic>e.g.</italic>U<sub>4</sub>O<sub>9</sub>, U<sub>3</sub>O<sub>7</sub>and U<sub>3</sub>O<sub>8</sub>). To try resolving the electronic structure associated with unique atomic positions, a combined application of diffraction and spectroscopic techniques, such as diffraction anomalous fine structure (DAFS), can be considered. Reported here is the application of two newly developed routines for assessing a DAFS data set, with the aim of refining the uranium X-ray dispersion corrections. High-resolution anomalous diffraction data were acquired from polycrystalline powder samples of UO<sub>2</sub>(containing tetravalent uranium) and potassium uranate (KUO<sub>3</sub>, containing pentavalent uranium) using synchrotron radiation in the vicinity of the U<italic>L</italic><sub>3</sub>edge (17.17 keV). Both routines are based on an iterative refinement of the dispersion corrections, but they differ in either using the intensity of a selection of reflections or doing a full-pattern (Rietveld method) refinement. The uranium dispersion corrections obtained using either method are in excellent agreement with each other, and they show in great detail the chemical shifts and differences in fine structure expected for tetravalent and pentavalent uranium. This approach may open new possibilities for the assessment of other, more complicated, materials such as mixed-valence compounds. Additionally, the DAFS methodology can offer a significant resource optimization because each data set contains both structural (diffraction) and chemical (spectroscopy) information, which can avoid the requirement to use multiple experimental stations at synchrotron sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001208800100008 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1600-5767 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes FPS Economy, SF-CORMOD; Approved Most recent IF: 6.1; 2024 IF: 2.495  
  Call Number (down) EMAT @ emat @c:irua:206011 Serial 9127  
Permanent link to this record
 

 
Author Saniz, R.; Baldinozzi, G.; Arts, I.; Lamoen, D.; Leinders, G.; Verwerft, M. pdf  url
doi  openurl
  Title Charge order, frustration relief, and spin-orbit coupling in U3O8 Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 5 Pages 054410  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Research efforts on the description of the low-temperature magnetic order and electronic properties of U3O8 have been inconclusive so far. Reinterpreting neutron scattering results, we use group representation theory to show that the ground state presents collinear out-of-plane magnetic moments, with antiferromagnetic coupling both in-layer and between layers. Charge order relieves the initial geometric frustration, generating a slightly distorted honeycomb sublattice with Néel-type order. The precise knowledge of the characteristics of this magnetic ground state is then used to explain the fine features of the band gap. In this system, spin-orbit coupling (SOC) is of critical importance, as it strongly affects the electronic structure, narrowing the gap by ∼38%, compared to calculations neglecting SOC. The predicted electronic structure actually explains the salient features of recent optical absorption measurements, further demonstrating the excellent agreement between the calculated ground state properties and experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041429800007 Publication Date 2023-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD Spent Fuel CORrosion MODeling).Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number (down) EMAT @ emat @c:irua:197043 Serial 8796  
Permanent link to this record
 

 
Author Leinders, G.; Baldinozzi, G.; Ritter, C.; Saniz, R.; Arts, I.; Lamoen, D.; Verwerft, M. pdf  url
doi  openurl
  Title Charge Localization and Magnetic Correlations in the Refined Structure of U3O7 Type A1 Journal article
  Year 2021 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 60 Issue 14 Pages 10550-10564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin–orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) “oxo-type” bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 μB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675430900049 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD – Spent Fuel CORrosion MODeling). This work was performed in part using HPC resources from GENCI-IDRIS (Grants 2020-101450 and 2020-101601), and in part by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. GL thanks E. Suard and C. Schreinemachers for assistance during the neutron scattering experiments at the ILL. GB acknowledges V. Petříček for suggestions on using JANA2006. Approved Most recent IF: 4.857  
  Call Number (down) EMAT @ emat @c:irua:179907 Serial 6801  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: