toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 10 Pages 101905-101905,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000301655500021 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number (up) UA @ lucian @ c:irua:97794 Serial 809  
Permanent link to this record
 

 
Author Li, Z.; Covaci, L.; Marsiglio, F. url  doi
openurl 
  Title Impact of Dresselhaus versus Rashba spin-orbit coupling on the Holstein polaron Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205112-205112,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We utilize an exact variational numerical procedure to calculate the ground-state properties of a polaron in the presence of Rashba and linear Dresselhaus spin-orbit coupling. We find that when the linear Dresselhaus spin-orbit coupling approaches the Rashba spin-orbit coupling, the Van Hove singularity in the density of states will be shifted away from the bottom of the band and finally disappear when the two spin-orbit couplings are tuned to be equal. The effective mass will be suppressed; the trend will become more significant for low phonon frequency. The presence of two dominant spin-orbit couplings will make it possible to tune the effective mass with more varied observables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303794900003 Publication Date 2012-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by the Flemish Science Foundation (FWO-Vl), and by the Canadian Institute for Advanced Research (CIfAR). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number (up) UA @ lucian @ c:irua:99121 Serial 1558  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: