toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Annegarn, H.J.; Storms, H.; Van Grieken, R.E.; Booth-Jones, P.A. pdf  doi
openurl 
  Title Composition and size of individual particles from a gold mine atmosphere Type A3 Journal article
  Year 1987 Publication Mining science & technology Abbreviated Journal  
  Volume 5 Issue 2 Pages 111-119  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Airborne dust particles were collected in a return airway of a South African gold mine using a 7-stage, single-orifice cascade impactor. Between 70 and 130 individual particles were analysed on each stage using automated electron-probe x-ray microanalysis (EPXMA). Particle size and shape parameters are given for different classes of particles sorted by elemental composition. Silicon-rich particles are the most abundant overall, while chlorine-rich particles dominate (up to 80%) in the range 0.21.0 μm. It is shown that EPXMA characterisation of particles can be used to infer relative contributions of various particle sources and dust generating processes to the total dust concentrations in mine atmospheres. An understanding of the nature and source of particles is essential for any source control strategy. We conclude that the EPXMA technique merits inclusion in the repertoire of techniques used for characterising underground dust.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2004-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9031 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:116777 Serial 7701  
Permanent link to this record
 

 
Author Kolaitis, L.N.; Bruynseels, F.J.; Van Grieken, R.E.; Andreae, M.O. doi  openurl
  Title Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles Type A1 Journal article
  Year 1989 Publication Environmental science and technology Abbreviated Journal  
  Volume 23 Issue 2 Pages 236-240  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1989T024900023 Publication Date 2005-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:116813 Serial 7783  
Permanent link to this record
 

 
Author Tytgat, T.; Smits, M.; Lenaerts, S.; Verbruggen, S.W. pdf  doi
openurl 
  Title Immobilization of TiO2 into self-supporting photocatalytic foam : influence of calcination temperature Type A1 Journal article
  Year 2014 Publication International journal of applied ceramic technology Abbreviated Journal Int J Appl Ceram Tec  
  Volume 11 Issue 4 Pages 714-722  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of photocatalytic powder is crucial to obtain industrially relevant purification processes. To achieve this goal, self-supporting TiO2 foams were manufactured by a polyacrylamide gel process. These gels were calcined at different temperatures to study the effect of the calcination temperature on foam characteristics (rigidity, crystallinity, and porosity) and its influence on photocatalytic activity. The results show that an optimal degradation is achieved for those foams calcined between 700 and 800°C. Calcination at higher temperatures results in a steep decrease in activity, explained by stability issues of the material due to formation of Na2SO4 phases and a larger rutile fraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339051500012 Publication Date 2013-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1546-542x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.048 Times cited 2 Open Access  
  Notes ; This work was supported by a PhD grant from the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 1.048; 2014 IF: 1.320  
  Call Number (up) UA @ admin @ c:irua:117295 Serial 5960  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C. doi  openurl
  Title Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
  Year 2014 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 32 Issue 1 Pages 01a123  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335847600023 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 10 Open Access  
  Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322  
  Call Number (up) UA @ admin @ c:irua:117296 Serial 5936  
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K. pdf  doi
openurl 
  Title Polycyclodextrin and carbon nanotubes as composite for tyrosinase immobilization and its superior electrocatalytic activity towards butylparaben an endocrine disruptor Type A1 Journal article
  Year 2015 Publication Journal of nanoscience and nanotechnology Abbreviated Journal  
  Volume 15 Issue 5 Pages 3365-3372  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We developed a protocol for the immobilization of tyrosinase (Tyr) on the composite of polycyclodextrin polymer (CDP) and carbon nanotubes for the detection of an endocrine disruptor, i.e., butylparaben (BP). The formation of the CDP polymer was characterized by UV-Vis spectrophotometry. The conducting film of cross-linked CDP and carbon nanotubes, displays excellent matrix capabilities for Tyr immobilization. The host-guest chemical reaction ability of CD and the ππ stacking interaction assure the bioactivity of Tyr towards butylparaben. The developed biosensor was characterized electrochemically by electrochemical impedance spectroscopy. The enzyme-substrate kinetic parameters such as the apparent Michaelis-Menten constant (K M app) was measured under saturated substrate concentration. The determination of butylparaben was carried out by using square wave voltammetry over the concentration range of 2.1 to 35.4 μM with a detection limit of 0.1 μM. The fabricated biosensor was successfully applied in real-life cosmetic samples with good recovery ranging from 98.5 to 102.8%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347435200007 Publication Date 2014-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. ; Approved Most recent IF: NA  
  Call Number (up) UA @ admin @ c:irua:119550 Serial 5776  
Permanent link to this record
 

 
Author Fobe, B.O.; Vleugels, G.J.; Roekens, E.J.; Van Grieken, R.E.; Hermosin, B.; Ortega-Calvo, J.J.; Sanchez del Junco, A.; Saiz-Jimenez, C. doi  openurl
  Title Organic and inorganic compounds in limestone weathering crusts from cathedrals in Southern and Western Europe Type A1 Journal article
  Year 1995 Publication Environmental science and technology Abbreviated Journal  
  Volume 29 Issue Pages 1691-1701  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995RB13100055 Publication Date 2005-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:12346 Serial 8345  
Permanent link to this record
 

 
Author Rossi, F.; Olguin, E.J.; Diels, L.; De Philippis, R. pdf  doi
openurl 
  Title Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification Type A1 Journal article
  Year 2015 Publication New biotechnology Abbreviated Journal  
  Volume 32 Issue 1 Pages 109-120  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some of the issues that, among others, have to be addressed and tested for cost-effective CO2 sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347507800015 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:123762 Serial 8242  
Permanent link to this record
 

 
Author Baken, S.; Salaets, P.; Desmet, N.; Seuntjens, P.; Vanlierde, E.; Smolders, E. doi  openurl
  Title Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments Type A1 Journal article
  Year 2015 Publication Environmental science and technology Abbreviated Journal  
  Volume 49 Issue 5 Pages 2886-2894  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The fate of iron (Fe) may affect that of phosphorus (P) and arsenic (As) in natural waters. This study addresses the removal of Fe, P, and As from streams in lowland catchments fed by reduced, Fe-rich groundwater (average: 20 mg Fe L-1). The concentrations of dissolved Fe (<0.45 mu m) in streams gradually decrease with increasing hydraulic residence time (travel time) of the water in the catchment. The removal of Fe from streamwater is governed by chemical reactions and hydrological processes: the oxidation of ferrous iron (Fe(II)) and the subsequent formation of particulate Fe oxyhydroxides proceeds as the water flows through the catchment into increasingly larger streams. The Fe removal exhibits first-order kinetics with a mean half-life of 12 h, a value in line with predictions by a kinetic model for Fe(II) oxidation. The Fe concentrations in streams vary seasonally: they are higher in winter than in summer, due to shorter hydraulic residence time and lower temperature in winter. The removal of P and As is much faster than that of Fe. The average concentrations of P and As in streams (42 mu g P L-1) and 1.4 mu g As L-1) are 1 order of magnitude below those in groundwater (393 mu g P L-1 and 17 mu g As L-1). This removal is attributed to fast sequestration by oxidizing Fe when the water enters oxic environments, possibly by adsorption on Fe oxyhydroxides or by formation of ferric phosphates. The average P and As concentrations in groundwater largely exceed local environmental limits for freshwater (140 mu g P L-1 and 3 mu g As L((-1)), but in streams, they are below these limits. Naturally occurring Fe in groundwater may alleviate the environmental risk associated with P and As in the receiving streams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350611100040 Publication Date 2015-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:125409 Serial 8354  
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I. pdf  url
doi  openurl
  Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
  Year 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot  
  Volume 91 Issue 6 Pages 1914-1922  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375768300040 Publication Date 2015-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.135 Times cited 3 Open Access  
  Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135  
  Call Number (up) UA @ admin @ c:irua:127694 Serial 5972  
Permanent link to this record
 

 
Author Saha, S.; Badhe, N.; Seuntjens, D.; Vlaeminck, S.E.; Biswas, R.; Nandy, T. doi  openurl
  Title Effective carbon and nutrient treatment solutions for mixed domestic-industrial wastewater in India Type A1 Journal article
  Year 2015 Publication Water science and technology Abbreviated Journal  
  Volume 72 Issue 4 Pages 651-657  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The present study evaluates effectiveness of up-flow anaerobic sludge blanket (UASB) reactor followed by two post-anaerobic treatment options, namely free-surface, up-flow constructed wetland (FUP-CW) and oxygen-limited anaerobic nitrification/denitrification (OLAND) processes in treating sewage from the peri-urban areas in India receiving illegal industrial infiltrations. The UASB studies yielded robust results towards fluctuating strength of sewage and consistently removed 87-98% chemical oxygen demand (COD) at a hydraulic retention time of 1.5-2 d. The FUP-CW removed 68.5 +/- 13% COD, 68 +/- 3% NH4+-N, 38 +/- 5% PO43--P, 97.6 +/- 5% suspended particles and 97 +/- 13% fecal coliforms. Nutrient removal was found to be limiting in FUP-CW, especially in winter. Nitrogen removal in the OLAND process were 100 times higher than the FUP-CW process. Results show that UASB followed by FUP-CW can be an excellent, decentralized sewage treatment option, except during winter when nutrient removal is limited in FUP-CW. Hence, the study proposes bio-augmentation of FUP-CW with OLAND biomass for overall improvement in the performance of UASB followed by FUP-CW process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359387200019 Publication Date 2015-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:127775 Serial 7840  
Permanent link to this record
 

 
Author Seuntjens, D.; Bundervoet, B.L.M.; Mollen, H.; De Mulder, C.; Wypkema, E.; Verliefde, A.; Nopens, I.; Colsen, J.G.M.; Vlaeminck, S.E. url  doi
openurl 
  Title Energy efficient treatment of A-stage effluent : pilot-scale experiences with short-cut nitrogen removal Type A1 Journal article
  Year 2016 Publication Water science and technology Abbreviated Journal  
  Volume 73 Issue 9 Pages 2150-2158  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376285300013 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:130442 Serial 7908  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Blust, R.; Lenaerts, S. pdf  doi
openurl 
  Title Valorization of flue gas by combining photocatalytic gas pretreatment with microalgae production Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 50 Issue 5 Pages 2538-2545  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solubility in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NO in the cultivation broth. The absorbed NOx will form NO2- and NO3- that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371371700048 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 6.198  
  Call Number (up) UA @ admin @ c:irua:132348 Serial 6003  
Permanent link to this record
 

 
Author Li, T.; Piltz, B.; Podola, B.; Dron, A.; de Beer, D.; Melkonian, M. pdf  doi
openurl 
  Title Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor Type A1 Journal article
  Year 2016 Publication Biotechnology and bioengineering Abbreviated Journal  
  Volume 113 Issue 5 Pages 1046-1055  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000mol photons m(-2) s(-1)) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 mu m, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150m, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2mM was measured with 1,000mol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. Biotechnol. Bioeng. 2016;113: 1046-1055. (c) 2015 Wiley Periodicals, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373476700013 Publication Date 2015-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3592 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:133255 Serial 8248  
Permanent link to this record
 

 
Author Grunert, O.; Reheul, D.; Van Labeke, M.-C.; Perneel, M.; Hernandez-Sanabria, E.; Vlaeminck, S.E.; Boon, N. url  doi
openurl 
  Title Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture Type A1 Journal article
  Year 2016 Publication Microbial Biotechnology Abbreviated Journal  
  Volume 9 Issue 3 Pages 389-399  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated Euro15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374662600009 Publication Date 2016-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:133617 Serial 8013  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S. pdf  doi
openurl 
  Title Deammonification for digester supernatant pretreated with thermal hydrolysis : overcoming inhibition through process optimization Type A1 Journal article
  Year 2016 Publication Applied microbiology and biotechnology Abbreviated Journal  
  Volume 100 Issue 12 Pages 5595-5606  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O-2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 +/- A 1 % for conventional to 72 +/- A 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 +/- A 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 +/- A 0.10 mg O-2/L).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376456700033 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0175-7598; 1432-0614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:134166 Serial 7755  
Permanent link to this record
 

 
Author Verstraete, W.; Clauwaert, P.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Used water and nutrients : recovery perspectives in a 'panta rhei' context Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 215 Issue Pages 199-208  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract There is an urgent need to secure global supplies in safe water and proteinaceous food in an eco-sustainable manner, as manifested from tensions in the nexus Nutrients-Energy-Water-Environment-Land. This paper is concept based and provides solutions based on resource recovery from municipal and industrial wastewater and from manure. A set of decisive factors is reviewed facilitating an attractive business case. Our key message is that a robust barrier must clear the recovered product from its original status. Besides refined inorganic fertilizers, a central role for five types of microbial protein is proposed. A resource cycling solution for the extremely confined environment of space habitation should serve as an incentive to assimilate a new user mindset. To achieve the ambitious goal of sustainable food security, the solutions suggested here need a broad implementation, hand in hand with minimizing losses along the entire fertilizer-feed-food-fork chain. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377935100022 Publication Date 2016-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:134591 Serial 8726  
Permanent link to this record
 

 
Author Han, M.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Bott, C.; Murthy, S. doi  openurl
  Title Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification Type A1 Journal article
  Year 2016 Publication Water science and technology Abbreviated Journal  
  Volume 74 Issue 2 Pages 375-384  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract While deammonification of high-strength wastewater in the sludge line of sewage treatment plants has become well established, the potential cost savings spur the development of this technology for mainstream applications. This study aimed at identifying the effect of aeration and organic carbon on the deammonification process. Two 10 L sequencing bath reactors with different aeration frequencies were operated at 25 degrees C. Real wastewater effluents from chemically enhanced primary treatment and high-rate activated sludge process were fed into the reactors with biodegradable chemical oxygen demand/nitrogen (bCOD/N) of 2.0 and 0.6, respectively. It was found that shorter aerobic solids retention time (SRT) and higher aeration frequency gave more advantages for aerobic ammonium-oxidizing bacteria (AerAOB) than nitrite oxidizing bacteria (NOB) in the system. From the kinetics study, it is shown that the affinity for oxygen is higher for NOB than for AerAOB, and higher dissolved oxygen set-point could decrease the affinity of both AerAOB and NOB communities. After 514 days of operation, it was concluded that lower organic carbon levels enhanced the activity of anoxic ammonium-oxidizing bacteria (AnAOB) over denitrifiers. As a result, the contribution of AnAOB to nitrogen removal increased from 40 to 70%. Overall, a reasonably good total removal efficiency of 66% was reached under a low bCOD/N ratio of 2.0 after adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380765500011 Publication Date 2016-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:135032 Serial 8062  
Permanent link to this record
 

 
Author De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 218 Issue Pages 1237-1245  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384710500155 Publication Date 2016-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:137236 Serial 8666  
Permanent link to this record
 

 
Author Han, M.; Vlaeminck, S.E.; Al-Omari, A.; Wett, B.; Bott, C.; Murthy, S.; De Clippeleir, H. doi  openurl
  Title Uncoupling the solids retention times of flocs and granules in mainstream deammonification : a screen as effective out-selection tool for nitrite oxidizing bacteria Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 221 Issue Pages 195-204  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study focused on a physical separator in the form of a screen to out-select nitrite oxidizing bacteria (NOB) for mainstream sewage treatment. This separation relied on the principle that the NOB prefer to grow in flocs, while anammox bacteria (AnAOB) reside in granules. Two types of screens (vacuum and vibrating) were tested for separating these fractions. The vibrating screen was preferred due to more moderate normal forces and additional tangential forces, better balancing retention efficiency of AnAOB granules (41% of the AnAOB activity) and washout of NOB (92% activity washout). This operation resulted in increased NOB out-selection (AerAOB/NOB ratio of 2.3) and a total nitrogen removal efficiency of 70% at influent COD/N ratio of 1.4. An effluent total nitrogen concentration <10 mg N/L was achieved using this novel approach combining biological selection with physical separation, opening up the path towards energy positive sewage treatment. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386241000025 Publication Date 2016-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:138157 Serial 8705  
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E. doi  openurl
  Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal  
  Volume 50 Issue 17 Pages 9781-9790  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382805800097 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:138270 Serial 8176  
Permanent link to this record
 

 
Author Pintucci, C.; Carballa, M.; Varga, S.; Sarli, J.; Peng, L.; Bousek, J.; Pedizzi, C.; Ruscalleda, M.; Tarragó, E.; Prat, D.; Colica, G.; Picavet, M.; Colsen, J.; Benito, O.; Balaguer, M.; Puig, S.; Lema, J.M.; Colprim, J.; Fuchs, W.; Vlaeminck, S.E. url  doi
openurl 
  Title The ManureEcoMine pilot installation : advanced integration of technologies for the management of organics and nutrients in livestock waste Type A1 Journal article
  Year 2017 Publication Water science and technology Abbreviated Journal  
  Volume 75 Issue 6 Pages 1281-1293  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m−3 d−1, with a CH4 production of 1.4 Nm3 m−3 d−1. The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to 4 times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397590800003 Publication Date 2016-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:139911 Serial 8200  
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 217 Issue Pages 165-172  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380226300023 Publication Date 2016-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:139912 Serial 8421  
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 211 Issue Pages 41-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375186700006 Publication Date 2016-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:139913 Serial 8307  
Permanent link to this record
 

 
Author Zarafshani, K.; Ghasemi, S.; Houshyar, E.; Ghanbari, R.; Van Passel, S.; Azadi, H. pdf  openurl
  Title Canola adoption enhancement in Western Iran Type A1 Journal article
  Year 2017 Publication Journal Of Agricultural Science And Technology Abbreviated Journal J Agr Sci Tech-Iran  
  Volume 19 Issue 1 Pages 47-58  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Canola production is an important alternative for agricultural policy-makers in Iran to reduce dependency on the imported vegetable oils. Nevertheless, the canola planted area is only increasing at a slow pace, indicating a low willingness-to-accept of farmers. The general aim of this study was to determine the factors influencing the canola adoption in the Kermanshah Province in Western Iran. Employing stratified random sampling method, 106 farmers from each adopter and non-adopter group were selected. Helping to reach a suitable extensional program, two main categories of variables were defined; i.e. farmers personal characteristics and extension parameters. The analysis of farmers personal characteristics variables revealed that the adopters had larger farms and were younger. The results also show that 80% of the adopters were highly to very highly willing to cultivate canola. Furthermore, a logistic regression model estimated the influence of extensional parameters variables on the canola adoption. According to the regression model, the most effective factors are contact with extension agents and participating in extension classes. As a conclusion, it is suggested that the focus of extension services should be to reduce the distance to agricultural service centers in combination with more contact with extension agents and classes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1680-7073 ISBN Additional Links UA library record  
  Impact Factor 0.813 Times cited Open Access  
  Notes Approved Most recent IF: 0.813  
  Call Number (up) UA @ admin @ c:irua:140684 Serial 6164  
Permanent link to this record
 

 
Author De Baere, K.; Verstraelen, H.; Willemen, R.; Smet, J.-P.; Tchuindjang, J.T.; Lecomte-Beckers, J.; Lenaerts, S.; Meskens, R.; Jung, H.G.; Potters, G. pdf  doi
openurl 
  Title Assessment of corrosion resistance, material properties, and weldability of alloyed steel for ballast tanks Type A1 Journal article
  Year 2017 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan  
  Volume 22 Issue 1 Pages 176-199  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Ballast tanks are of great importance in the lifetime of modern merchant ships. Making a ballast tank less susceptible to corrosion can, therefore, prolong the useful life of a ship and, thereby, lower its operational cost. An option to reinforce a ballast tank is to construct it out of a corrosion-resistant steel type. Such steel was recently produced by POSCO Ltd., South Korea. After 6 months of permanent immersion, the average corrosion rate of A and AH steel (31 samples) was 535 g m(-2) year(-1), while the Korean CRS was corroding with 378 g m(-2) year(-1). This entails a gain of 29 %. Follow-up measurements after 10, 20, and 24 months confirmed this. The results after 6 months exposure to alternating wet/dry conditions are even more explicit. Furthermore, the physical and metallurgical properties of this steel show a density of 7.646 t/m(3), the elasticity modulus 209.3 GPa, the tensile strength 572 MPa, and the hardness 169HV10. Microscopically, the metal consists of equiaxed and recrystallized grains (ferrite and pearlite), with an average size of between 20 and 30 A mu m (ASTM E 112-12 grain size number between 7 and 8) with a few elongated pearlitic grains. The structure is banded ferrite/pearlite. On the basis of a series of energy dispersive X-ray spectrometer measurements the lower corrosion rate of the steel can be attributed to the interplay of Al, Cr, their oxides, and the corroding steel. In addition, the role of each element in the formation of oxide layers and the mechanisms contributing to the corrosion resistance are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395006400015 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.838 Times cited 3 Open Access  
  Notes ; This paper is published with the explicit permission of POSCO Ltd., original source of the corrosion resistant steel. Due to the creativity of the POSCO engineers and scientists, we could have our challenge, presented in this manuscript. The authors wish to thank the BOF funding received from the University of Antwerp and the Maritime Academy. We also wish to express our gratitude towards to the American Bureau of Shipping for their assistance in procuring the CRS plates, their moral and financial support, as well as to OCAS (Arcelor Mittal, Zelzate, Belgium) for their assistance in a number of measurements. ; Approved Most recent IF: 0.838  
  Call Number (up) UA @ admin @ c:irua:142509 Serial 5928  
Permanent link to this record
 

 
Author Wang, D.; Liu, Y.; Ngo, H.H.; Zhang, C.; Yang, Q.; Peng, L.; He, D.; Zeng, G.; Li, X.; Ni, B.-J. pdf  url
doi  openurl
  Title Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation Type A1 Journal article
  Year 2017 Publication Bioresource technology Abbreviated Journal  
  Volume 238 Issue Pages 343-351  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%.However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402485500042 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:144155 Serial 7489  
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. doi  openurl
  Title Study of positive and negative plasma catalytic oxidation of ethylene Type A1 Journal article
  Year 2017 Publication Environmental technology Abbreviated Journal Environ Technol  
  Volume 38 Issue 12 Pages 1554-1561  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15kV. This shows the potential of plasma catalysis as indoor air purification technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402018900010 Publication Date 2016-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 1 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for supporting and funding this research. ; Approved Most recent IF: 1.751  
  Call Number (up) UA @ admin @ c:irua:144351 Serial 5993  
Permanent link to this record
 

 
Author Nguyen Thi Tuyet; Nguyen Phuoc Dan; Nguyen Cong Vu; Nguyen Le Hoang Trung; Bui Xuan Thanh; De Wever, H.; Goemans, M.; Diels, L. doi  openurl
  Title Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste Type A1 Journal article
  Year 2016 Publication Water science and technology Abbreviated Journal  
  Volume 73 Issue 3 Pages 597-606  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study assessed an alternative concept for co-treatment of sewage and organic kitchen waste in Vietnam. The goal was to apply direct membrane filtration for sewage treatment to generate a permeate that is suitable for discharge. The obtained chemical oxygen demand (COD) concentrations in the permeate of ultrafiltration tests were indeed under the limit value (50 mg/L) of the local municipal discharge standards. The COD of the concentrate was 5.4 times higher than that of the initial feed. These concentrated organics were then co-digested with organic kitchen wastes at an organic loading rate of 2.0 kg VS/m(3).d. The volumetric biogas production of the digester was 1.94 +/- 0.34 m(3)/m(3).d. The recovered carbon, in terms of methane gas, accounted for 50% of the total carbon input of the integrated system. Consequently, an electrical production of 64 Wh/capita/d can be obtained when applying the proposed technology with the current wastes generated in Ho Chi Minh City. Thus, it is an approach with great potential in terms of energy recovery and waste treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374396300018 Publication Date 2016-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:144749 Serial 8144  
Permanent link to this record
 

 
Author van Malderen, H.; Van Grieken, R.; Bufetov, N.V.; Koutzenogii, K.P. doi  openurl
  Title Chemical characterization of individual aerosol particles in Central Siberia Type A1 Journal article
  Year 1996 Publication Environmental science and technology Abbreviated Journal  
  Volume 30 Issue Pages 312-321  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1996TN49700065 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:14636 Serial 7648  
Permanent link to this record
 

 
Author van Malderen, H.; Hoornaert, S.; Van Grieken, R. doi  openurl
  Title Identification of individual aerosol particles containing Cr, Pb, and Zn above the North Sea Type A1 Journal article
  Year 1996 Publication Environmental science and technology Abbreviated Journal  
  Volume 30 Issue Pages 489-498  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aerosol samples have been collected over the southern bight of the North Sea from an aircraft. In this way, 96 samples were taken for single-particle analysis during 16 flights. Almost 45 000 individual particles were analyzed with electron probe X-ray microanalysis. More than 5000 of these were found to contain significant concentrations of one or more of the heavy metals Cr, Pb, and Zn. With the help of hierarchical, nonhierarchical, and fuzzy clustering techniques, various heavy metal-containing particle types could be identified. Significant differences in abundances were detected in the North Sea heavy metal aerosol, depending on the origin of the air masses. In samples with continental influence 50 times more Zn- and Pb-containing particles were found than in samples with a marine history. For Cr, on the other hand, we found abundances in the marine sector that were one-third of the values for continental sectors. This might point to a rather undefined marine source, which could be the recycling of previously deposited material by reinjection into the atmosphere by sea spray. The highest values for Cr-, Pb-, and Zn-containing particles were always detected under southeastern wind directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1996TT49600036 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:14639 Serial 8053  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: