|   | 
Details
   web
Records
Author Buyle, M.; Audenaert, A.; Billen, P.; Boonen, K.; Van Passel, S.
Title The future of Ex-Ante LCA? Lessons learned and practical recommendations Type A1 Journal article
Year 2019 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 11 Issue 19 Pages 5456
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Biochemical Wastewater Valorization & Engineering (BioWaVE); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Every decision-oriented life cycle assessment (LCAs) entails, at least to some extent, a future-oriented feature. However, apart from the ex-ante LCAs, the majority of LCA studies are retrospective in nature and do not explicitly account for possible future effects. In this review a generic theoretical framework is proposed as a guideline for ex-ante LCA. This framework includes the entire technology life cycle, from the early design phase up to continuous improvements of mature technologies, including their market penetration. The compatibility with commonly applied system models yields an additional aspect of the framework. Practical methods and procedures are categorised, based on how they incorporate future-oriented features in LCA. The results indicate that most of the ex-ante LCAs focus on emerging technologies that have already gone through some research cycles within narrowly defined system boundaries. There is a lack of attention given to technologies that are at a very early development stage, when all options are still open and can be explored at a low cost. It is also acknowledged that technological learning impacts the financial and environmental performance of mature production systems. Once technologies are entering the market, shifts in market composition can lead to substantial changes in environmental performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493525500315 Publication Date 2019-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited 4 Open Access
Notes ; Thanks to Koen Breemersch for providing insightful and useful comments on draft versions of this manuscript. This work was supported by the University of Antwerp and the Flemish Institute for Technological Research (VITO). The authors also acknowledge anonymous reviewers for the constructive suggestions and the stimulating discussion. ; Approved Most recent IF: 1.789
Call Number (down) UA @ admin @ c:irua:162571 Serial 6205
Permanent link to this record
 

 
Author Van Winckel, T.; Vlaeminck, S.E.; Al-Omari, A.; Bachmann, B.; Sturm, B.; Wett, B.; Takács, I.; Bott, C.; Murthy, S.N.; De Clippeleir, H.
Title Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification Type A1 Journal article
Year 2019 Publication Environmental Science: Water Research & Technology Abbreviated Journal
Volume 5 Issue 10 Pages 1769-1781
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Deammonification systems are being implemented as cost- and resource-efficient nitrogen removal processes. However, their complexity is a major hurdle towards successful transposition from side- to mainstream application. Merely out-selecting nitrite oxidizing bacteria (NOB) or retaining anammox bacteria (AnAOB) does not guarantee efficient mainstream deammonification. This paper presents for the first time the interactions and synergies between kinetic selection, through management of residual substrates, and physical selection, through separation of solid retention times (SRTs). This allowed the formulation of tangible operational recommendations for successful deammonification. Activity measurements were used to establish retention efficiencies (η) for AnAOB for full-scale cyclones and rotating drum screens installed at a sidestream and mainstream deammonification reactor (Strass, Austria). In the sidestream reactor, using a screen (η = 91%) instead of a cyclone (η = 88%) may increase the capacity by up to 29%. For the mainstream reactor, higher AnAOB retention efficiencies achieved by the screen (η = 72%) compared to the cyclone (η = 42%) induced a prospective increase in capacity by 80–90%. In addition, the switch in combination with bioaugmentation from the sidestream made the process less dependent on nitrite availability, thus aiding in the outselection of NOB. This allowed for a more flexible (intermittent) aeration strategy and a reduced need for tight SRT control for NOB washout. A sensitivity analysis explored expected trends to provide possible operational windows for further calibration. In essence, characterization of the physical selectors at full scale allowed a deeper understanding of operational windows of the process and quantification of capacity, ultimately leading to a more space and energy conservation process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487968200013 Publication Date 2019-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:162540 Serial 8498
Permanent link to this record
 

 
Author Van der Donck, M.
Title Excitonic complexes in transition metal dichalcogenides and related materials Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 224 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:162525 Serial 5412
Permanent link to this record
 

 
Author Janssens, K.
Title Special issue on Microscopic and ultratrace x-ray fluorescence analysis: 2 Type A1 Journal article
Year 1996 Publication Journal of trace and microprobe techniques Abbreviated Journal
Volume 14 Issue 3 Pages 461-604
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-4680 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:16250 Serial 5839
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S.
Title Proof of concept of an upscaled photocatalytic multi-tube reactor : a combined modelling and experimental study Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 378 Issue 378 Pages 122038
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Three upscaled multi-tube photocatalytic reactors designed for integration into HVAC (Heating, Ventilation and Air Conditioning) systems were proposed and evaluated using a CFD modelling approach, with emphasis on the flow, irradiation and concentration distribution in the reactor and hence, photocatalytic performance. Based on the obtained insights, the best reactor design was selected, further characterized and improved by an additional proof of concept study and eventually converted into practice. Subsequently, the scaled-up prototype was experimentally tested according to the CEN-EN-16846-1 standard (2017) for volatile organic compound (VOC) removal by an external scientific research center. The combined modelling and experimental approach used in this work, leads to essential insights into the design and assessment of photocatalytic reactors. Therefore, this study provides an essential step towards the optimization and commercialization of photocatalytic reactors for HVAC applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487764800011 Publication Date 2019-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216
Call Number (down) UA @ admin @ c:irua:162190 Serial 5986
Permanent link to this record
 

 
Author Perreault, P.; Robert, E.; Patience, G.S.
Title Experimental methods in chemical engineering : mass spectrometry – MS Type A1 Journal article
Year 2019 Publication The Canadian journal of chemical engineering Abbreviated Journal
Volume 97 Issue 5 Pages 1036-1042
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Mass spectrometry identifies the atomic mass of molecules and fragments in the gas phase. The spectrometer ionizes the molecules that then pass through an electric or magnetic field towards a detector. The field modifies the molecule's trajectory and we infer mass from its direction and velocity in a static field or from the stability of its path in a dynamic field. The electric current is amplified and a mass spectrum is generated from the location or timing of the signal from the detector, translated into a plot of the intensity as a function of the mass‐over‐charge ratio. It is field deployable, measures concentrations in real time with a temporal resolution better than 100 ms, and detection limits of fg. However, the signal drifts with time so we have to calibrate it as frequently as every hour. Calibrating requires multiple mixtures with varying concentrations to map the non‐linear response. The Web of Science Core Collection indexed over 60 000 articles that refer to MS (2016 and 2017) with applications ranging from permanent gas analysis, to identifying protein, forensic science, and natural products. The bibliometric software VOSViewer(2010) identified four clusters of research related to MS: (1) proteomics, proteins, plasma, and metabolomics; (2) solid phase extraction together with gas chromatography; (3) tandem mass spectrometry and liquid chromatography; and (4) waste water and toxicity. We expect that the technique will continue to evolve with increased sensitivity, lower drift, and greater specificity. Miniaturization efforts should also continue in order to develop faster field deployable instruments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468025000001 Publication Date 2019-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-4034; 1939-019x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:162123 Serial 7947
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B.
Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume 58 Issue 28 Pages 12751-12765
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476686000027 Publication Date 2019-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:162122 Serial 8416
Permanent link to this record
 

 
Author Kulkarni, S.; Gonzalez-Quiroga, A.; Nuñez, M.; Schuerewegen, C.; Perreault, P.; Goel, C.; Heynderickx, G.J.; Van Geem, K.M.; Marin, G.B.
Title An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units Type A1 Journal article
Year 2019 Publication AIChE journal Abbreviated Journal
Volume 65 Issue 8 Pages e16614-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Vortex units are commonly considered for various single and multiphase applications due to their process intensification capabilities. The transition from gas‐only flow to gas–solid flow remains largely unexplored nonetheless. During this transition, primary flow phenomenon, jets, and secondary flow phenomena, counterflow and backflow, are substantially reduced, before a rotating solids bed is established. This transitional flow regime is referred to as the vortex suppression regime. In the present work, this flow transition is identified and validated through experimental and computational studies in two vortex units with a scale differing by a factor of 2, using spherical aluminum and alumina particles. This experimental data supports the proposed theoretical particle monolayer solids loading that allows estimation of vortex suppression regime solids capacity for any vortex unit. It is shown that the vortex suppression regime is established at a solids loading theoretically corresponding to a monolayer being formed in the unit for 1g‐Geldart D‐ and 1g‐Geldart B‐type particles. The model closely agrees with experimental vortex suppression range for both aluminum and alumina particles. The model, as well as the experimental data, shows that the flow suppression regime depends on unit dimensions, particle diameter, and particle density but is independent of gas flow rate. This combined study, based on experimental and computational data and on a theoretical model, reveals the vortex suppression to be one of the basic operational parameters to study flow in a vortex unit and that a simple monolayer model allows to estimate the needed solids loading for any vortex device to induce this flow transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000474620800026 Publication Date 2019-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-1541 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:162121 Serial 7945
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Kulkarni, S.R.; Vandewalle, L.; Perreault, P.; Goel, C.; Heynderickx, G.J.; van Geem, K.M.; Marin, G.B.
Title Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor Type A1 Journal article
Year 2019 Publication Powder technology Abbreviated Journal
Volume 354 Issue Pages 410-422
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Processes requiring intensive interfacial momentum, mass and heat exchange between gases and particulate solids can be greatly enhanced by operating in a centrifugal field. This is realized in the Gas-Solid Vortex Reactor (GSVR) with centrifugal accelerations up to two orders of magnitude higher than the Earth's gravitational acceleration. Here, the flow patterns of two 1g-Geldart B-type particles are experimentally assessed, over the gas inlet velocity range 82–126 m s−1, in an 80 mm diameter and 15 mm height GSVR. The particles are monosized aluminum spheres of 0.5 mm diameter, and walnut shell in the sieve fraction 0.50–0.56 mm and aspect ratio 1.3 ± 0.2. Two dimensional Particle Image Velocimetry combined with Digital Image Analysis and pressure measurements revealed that periodic fluctuations in solids azimuthal and radial velocity between gas inlet slots are strongly related to the average solids azimuthal velocity and bed uniformity. Aluminum particles feature steeper changes in azimuthal velocity and more attenuated changes in radial velocity than walnut shell particles. Within the assessed gas inlet velocity range the solids bed of aluminum exhibits average azimuthal velocities and bed voidages 40–50% and ≈10% lower than those of walnut shell. The aerodynamic response time of the particles, i.e. ρsdp2/18μg, emerged as an important parameter to assess the influence of the carrier gas jet on the radial deflection of the particles and the interaction solids bed-outer wall. Too low aerodynamic response time relates to nonuniformity in bed voidage due to solids radial velocity fluctuations. Excessive aerodynamic response time indicates low solids azimuthal velocities due to solids bed-outer wall friction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000490625500041 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-5910 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:162120 Serial 7543
Permanent link to this record
 

 
Author Ma, Z.; Perreault, P.; Pelegrin, D.C.; Boffito, D.C.; Patience, G.S.
Title Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2FeCralloy catalysts Type A1 Journal article
Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 380 Issue Pages 122470-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Converting waste associated natural gas from oil fields is uneconomic with current gas-to-liquid technology. Micro Gas-to-Liquids technology ( GtL) combines process intensification and numbering up economics to reduce capital costs to convert flared and vented natural gas to value-added synthetic fuel: Milli-second contact times in the catalytic partial oxidation of methane (CPOX) integrated with a tandem Fischer-Tropsch (FT) step meets the economic constraints together with remote process control. FeCralloy knitted fibres with high thermal conductivity and low pressure drop, resist thermal and mechanical stresses in the high pressure CPOX step. The FeCralloy catalysts are free of pre-reduction treatments. We deposited Pt and/or CeO2 over the fibre surface via solution combustion synthesis. Methane conversion was higher at ambient pressure compared to 2 MPa while the Pt/CeO2 FeCralloy was relatively inert from 0.1 MPa to 2 MPa. However, both catalysts demonstrated high activity in quasi-chemical looping partial oxidation of methane: during the reduction step while feeding methane, an on-line mass spectrometer only detected H2 while in the oxidation step it detected predominantly CO. Kinetic modeling of the oxidation-reduction cycles suggests that the reaction follows a direct mechanism to produce CO and H2 rather than an indirect mechanism that first produces CO2 and H2O followed by reforming.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes Approved Most recent IF: 15.1; 2020 IF: 6.216
Call Number (down) UA @ admin @ c:irua:162119 Serial 8665
Permanent link to this record
 

 
Author Fatermans, J.
Title Quantitative atom detection from atomic-resolution transmission electron microscopy images Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 155 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:162101 Serial 5394
Permanent link to this record
 

 
Author Heyne, M.H.
Title Chemistry and plasma physics challenges for 2D materials technology Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 167 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transition-metal dichalcogenides such as MoS2 or WS2 are semiconducting materials with a layered structure. One single layer consists of a plane of metal atoms terminated on the top and bottom by the chalcogen atoms sulfur, selenium, or tellurium. These layers show strong in-plane covalent bonding, whereas the Van-der-Waals bonds in between adjacent layers are weak. Those weak bonds allow the microcleavage and extraction of a monolayer. Transistors built on such monolayer nanosheets are promising due to high electrostatic controllability in comparison to a bulk semiconductor. This is important for fast switching speed and low-power consumption in the OFF-state. Nonetheless, prototypes of such nanosheet transistors show non-idealities due to the fabrication process. Closed films on a large area cannot be obtained by mechanical exfoliation from mm-sized crystals. For wafer-level processing, synthetic growth methods are needed. It is a challenge to obtain a few layer thick crystals with large lateral grains or even without grain boundaries with synthetic growth techniques. This requires pre-conditioned monocrystalline substrates, high-temperature deposition, and polymer-assisted transfer to other target substrates after the growth. Such transfer is a source of cracks in the film and degrades the layers' promising properties by residual polymer from the bond material. Apart from transfer, patterning of the stacked 2D layers is necessary to build devices. The patterning of a 2D material itself or another material on top of it is challenging. The integration of the nanosheets into miniaturized devices cannot be done by conventional continuous-wave dry etching techniques due to the absence of etch stop layers and the vulnerability of these thin layers. To eliminate these issues in growth and integration, we explored the deposition methods on wafer-level and low-damage integration schemes. To this end, we studied the growth of MoS2 by a hybrid physical-chemical vapor deposition for which metal layers were deposited and subsequently sulfurized in H2S to obtain large area 2D layers. The impact of sulfurization temperature, time, partial H2S pressure, and H2 addition on the stoichiometry, crystallinity, and roughness were explored. Furthermore, a selective low-temperature deposition and conversion process at 450 °C for WS2 by the precursors WF6, H2S, and Si was considered. Si was used as a reducing agent for WF6 to deposit thin W films and H2S sulfurized this film in situ. The impact of the reducing agent amount, its surface condition, the temperature window, and the necessary time for the conversion of Si into W and W into WS2 were studied. Further quality improvement strategies on the WS2 were implemented by using extra capping layers in combination with annealing. Capping layers such as Ni and Co for metal-induced crystallization were compared to dielectric capping layers. The impact of the metal capping layer and its thickness on the recrystallization was evaluated. The dielectric capping layer's property to suppress sulfur loss under high temperature was explored. The annealings, which were done by rapid thermal annealing and nanosecond laser annealing, were discussed. Eventually, the fabrication of a heterostack with a MoS2 base layer and selectively grown WS2 was studied. Atomic layer etching was identified as attractive technique to remove the solid precursor Si from MoS2 in a layer-by-layer fashion. The in-situ removal of native SiO2 and the impact towards MoS2 was determined. The created patterned Si on MoS2 was then converted into patterned WS2 on MoS2 by the selective WF6/H2S process developed earlier. This procedure offers an attractive, scalable way to enable the fabrication of 2D devices with CMOS-compatible processes and contributes essential progress in the field 2D materials technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:162027 Serial 7662
Permanent link to this record
 

 
Author Vieira De Castro, L.
Title Properties of quasi particles on two dimensional materials and related structures Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 79 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:161999 Serial 5424
Permanent link to this record
 

 
Author Cautaerts, N.
Title Nanoscale study of ageing and irradiation induced precipitates in the DIN 1.4970 alloy Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 306 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:161997 Serial 5392
Permanent link to this record
 

 
Author Milovanović, S.P.; Peeters, F.M.
Title Strained graphene structures : from valleytronics to pressure sensing Type P1 Proceeding
Year 2018 Publication Nanostructured Materials For The Detection Of Cbrn Abbreviated Journal
Volume Issue Pages 3-17 T2 - NATO Advanced Research Workshop on Nanos
Keywords P1 Proceeding; Pharmacology. Therapy; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477758900001 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-024-1306-9; 978-94-024-1304-5; 978-94-024-1303-8; 978-94-024-1303-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved no
Call Number (down) UA @ admin @ c:irua:161972 Serial 8583
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.
Title Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 20 Pages 10552-10566
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties. We have systematically investigated the effects of surface adsorption, substitutional impurities, defect engineering, an electric field and strain engineering on the structural, electronic and magnetic properties of antimonene nanosheets, using spin-polarized density functional calculations based on first-principles. The adsorption or substitution of atoms can locally modify the atomic and electronic structures as well as induce a variety of electronic behaviors including metal, half-metal, ferromagnetic metal, dilute magnetic semiconductor and spin-glass semiconductor. Our calculations show that the presence of typical defects (vacancies and Stone-Wales defect) in antimonene affects the geometrical symmetry as well as the band gap in the electronic band structure and induces magnetism to antimonene. Moreover, by applying an external electric field and strain (uniaxial and biaxial), the electronic structure of antimonene can be easily modified. The calculation results presented in this paper provide a fundamental insight into the tunable nature of the electronic properties of antimonene, supporting its promise for use in future applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476561000031 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 4.123
Call Number (down) UA @ admin @ c:irua:161945 Serial 5430
Permanent link to this record
 

 
Author Smolders, S.; Willhammar, T.; Krajnc, A.; Şentosun, K.; Wharmby, M.T.; Lomachenko, K.A.; Bals, S.; Mali, G.; Roeffaers, M.B.J.; De Vos, D.E.; Bueken, B.
Title A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst Type A1 Journal article
Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 58 Issue 58 Pages 9160-9165
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo) catalytic potential, only a few Ti-IV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of (TiO6)-O-IV octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476691200034 Publication Date 2019-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 97 Open Access Not_Open_Access
Notes ; S.S., B.B., and D.E.D.V. gratefully acknowledge the FWO for funding (Aspirant grant, postdoctoral grant, project funding). T.W. acknowledges a grant from the Swedish research council (VR, 2014-06948). He acknowledges financial support from the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR (no. 2012.0112) as well as for purchasing the TEMs. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0021 and project No. N1-0079). We thank beamline I15-1 (XPDF), Diamond Light Source, for collection of X-ray total scattering data as part of the in-house research program (M.T.W.). A. Venier and O. Mathon are kindly acknowledged for the help during the XAS experiment at BM23 beamline of ESRF. We thank C. Lamberti and L. Braglia for providing the reference EXAFS spectrum of anatase. ; Approved Most recent IF: 11.994
Call Number (down) UA @ admin @ c:irua:161932 Serial 5382
Permanent link to this record
 

 
Author Crippa, F.; Rodriguez-Lorenzo, L.; Hua, X.; Goris, B.; Bals, S.; Garitaonandia, J.S.; Balog, S.; Burnand, D.; Hirt, A.M.; Haeni, L.; Lattuada, M.; Rothen-Rutishauser, B.; Petri-Fink, A.
Title Phase transformation of superparamagnetic iron oxide nanoparticles via thermal annealing : implications for hyperthermia applications Type A1 Journal article
Year 2019 Publication ACS applied nano materials Abbreviated Journal
Volume 2 Issue 2 Pages 4462-4470
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Magnetic hyperthermia has the potential to play an important role in cancer therapy and its efficacy relies on the nanomaterials selected. Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent candidates due to the ability of producing enough heat to kill tumor cells by thermal ablation. However, their heating properties depend strongly on crystalline structure and size, which may not be controlled and tuned during the synthetic process; therefore, a postprocessing is needed. We show how thermal annealing can be simultaneously coupled with ligand exchange to stabilize the SPIONs in polar solvents and to modify their crystal structure, which improves hyperthermia behavior. Using high-resolution transmission electron microscopy, X-ray diffraction, Mossbauer spectroscopy, vibrating sample magnetometry, and lock-in thermography, we systematically investigate the impact of size and ligand exchange procedure on crystallinity, their magnetism, and heating ability. We describe a valid and simple approach to optimize SPIONs for hyperthermia by carefully controlling the size, colloidal stability, and crystallinity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477917700048 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 18 Open Access Not_Open_Access
Notes ; This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials, the Adolphe Merkle Foundation, the University of Fribourg, and the European Society for Molecular Imaging (Grant E141200643). ; Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:161927 Serial 5393
Permanent link to this record
 

 
Author Clima, S.; Garbin, D.; Devulder, W.; Keukelier, J.; Opsomer, K.; Goux, L.; Kar, G.S.; Pourtois, G.
Title Material relaxation in chalcogenide OTS SELECTOR materials Type A1 Journal article
Year 2019 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 215 Issue 215 Pages 110996
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nature of the mobility-gap states in amorphous Ge-rich Ge50Se50 was found to be related to homopolar Ge bonds in the chains/clusters of Ge atoms. Threshold switching material suffers Ge-Ge bond concentration drift during material ageing, which can explain the observed reliability of the aGe(50)Se(50) selector devices. Strong Ge-N bonds were introduced to alleviate the observed instability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480665600008 Publication Date 2019-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 1 Open Access
Notes Approved Most recent IF: 1.806
Call Number (down) UA @ admin @ c:irua:161905 Serial 6308
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sevik, C.; Peeters, F.M.
Title Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory based first-principles calculations, the electronic, vibrational, elastic, and piezoelectric properties of two dynamically stable crystal phases of monolayer Janus MoSTe, namely 1H-MoSTe and 1T'-MoSTe, are investigated. Vibrational frequency analysis reveals that the other possible crystal structure, 1T-MoSTe, of this Janus monolayer does not exhibit dynamical stability. The 1H-MoSTe phase is found to be an indirect band-gap semiconductor while 1T'-MoSTe is predicted as small-gap semiconductor. Notably, in contrast to the direct band-gap nature of monolayers 1H-MoS2 and 1H-MoTe2, 1H-MoSTe is found to be an indirect gap semiconductor driven by the induced surface strains on each side of the structure. The calculated Raman spectrum of each structure shows unique character enabling us to clearly distinguish the stable crystal phases via Raman measurements. The systematic piezoelectric stress and strain coefficient analysis reveals that out-of-plane piezoelectricity appears in 1H-MoSTe and the noncentral symmetric 1T'-MoSTe has large piezoelectric coefficients. Static total-energy calculations show clearly that the formation of 1T'-MoSTe is feasible by using 1T'-MoTe2 as a basis monolayer. Therefore, we propose that the Janus MoSTe structure can be fabricated in two dynamically stable phases which possess unique electronic, dynamical, and piezoelectric properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476687800003 Publication Date 2019-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 91 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number (down) UA @ admin @ c:irua:161899 Serial 5411
Permanent link to this record
 

 
Author Yagmurcukardes, M.
Title Monolayer fluoro-InSe : formation of a thin monolayer via fluorination of InSe Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 2 Pages 024108
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory-based first-principles calculations, the formation of a thin monolayer structure, namely InSeF, via fluorination of monolayer InSe is predicted. It is shown that strong interaction of F and In atoms leads to the detachment of In-Se layers in monolayer InSe and 1T-like monolayer InSeF structure is formed. Monolayer InSeF is found to be dynamically stable in terms of its phonon band dispersions. In addition, its Raman spectrum is shown to exhibit totally distinctive features as compared to monolayer InSe. The electronic band dispersions reveal that monolayer InSeF is a direct gap semiconductor whose valence and conduction band edges reside at the Gamma point. Moreover, the orientation-dependent linear elastic properties of monolayer InSeF are investigated in terms of the in-plane stiffness and Poisson ratio. It is found that monolayer InSeF displays strong in-plane anisotropy in elastic constants and it is slightly softer material as compared to monolayer InSe. Overall, it is proposed that a thin, direct gap semiconducting monolayer InSeF can be formed by full fluorination of monolayer InSe as a new member of the two-dimensional family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477885700003 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number (down) UA @ admin @ c:irua:161891 Serial 5423
Permanent link to this record
 

 
Author Menezes, R.M.; Neto, J.F.S.; de Souza Silva, C.C.; Milošević, M.V.
Title Manipulation of magnetic skyrmions by superconducting vortices in ferromagnet-superconductor heterostructures Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 1 Pages 014431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Dynamics of magnetic skyrmions in hybrid ferromagnetic films harbors interesting physical phenomena and holds promise for technological applications. In this work, we discuss the behavior of magnetic skyrmions when coupled to superconducting vortices in a ferromagnet-superconductor heterostructure. We use numerical simulations and analytic arguments within London and Thiele formalisms to reveal broader possibilities for manipulating the skyrmion-vortex dynamic correlations in the hybrid system, that are not possible in its separated constituents. We explore the thresholds of particular dynamic phases, and quantify the phase diagram as a function of the relevant material parameters, applied current, and induced magnetic torques. Finally, we demonstrate the broad and precise tunability of the skyrmion Hall angle in the presence of vortices, with respect to currents applied to either or both the superconductor and the ferromagnet within the heterostructure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477883500004 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes ; This work was supported by the Research Foundation – Flanders (FWO-Vlaanderen) and Brazilian Agencies Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE, under Grant No. APQ-0198-1.05/14), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). ; Approved Most recent IF: 3.836
Call Number (down) UA @ admin @ c:irua:161890 Serial 5421
Permanent link to this record
 

 
Author Abdullah, H.M.; da Costa, D.R.; Bahlouli, H.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Electron collimation at van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that a domain wall separating single-layer graphene and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Two distinct configurations are studied, namely, locally delaminated AA-BLG and terminated AA-BLG whose terminal edge types are assumed to be either zigzag or armchair. We investigate the electron scattering using semiclassical dynamics and verify the results independently with wave-packet dynamics simulations. We find that the proposed system supports two distinct types of collimated beams that correspond to the lower and upper cones in AA-BLG. Our computational results also reveal that collimation is robust against the number of layers connected to AA-BLG and terminal edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477892800005 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; H.M.A. and H.B. acknowledge the support of King Fahd University of Petroleum and Minerals under research group Project No. RG181001. D.R.C and A.C. were financially supported by the Brazilian Council for Research (CNPq) and CAPES foundation. B.V.D. is supported by a postdoctoral fellowship by the Research Foundation Flanders (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number (down) UA @ admin @ c:irua:161887 Serial 5410
Permanent link to this record
 

 
Author Nakhaee, M.; Yagmurcukardes, M.; Ketabi, S.A.; Peeters, F.M.
Title Single-layer structures of a100- and b010-Gallenene : a tight-binding approach Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 28 Pages 15798-15804
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a(100)- and b(010)-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a(100)-Gallenene can be very well explained with an orthogonal basis set, while for b(010)-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b(010)-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a(100)-Gallenene nanoribbons are metallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476603700057 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes ; This work is supported by the Methusalem program of the Flemish government and the FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M. Y.). M. N. is partially supported by BFO (Uantwerpen). ; Approved Most recent IF: 4.123
Call Number (down) UA @ admin @ c:irua:161881 Serial 5427
Permanent link to this record
 

 
Author Van der Paal, J.; Fridman, G.; Bogaerts, A.
Title Ceramide cross-linking leads to pore formation: Potential mechanism behind CAP enhancement of transdermal drug delivery Type A1 Journal article
Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 16 Issue 16 Pages 1900122
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years, cold atmospheric plasma (CAP) has been proposed as a novel method to enhance transdermal drug delivery, while avoiding tissue damage. However, the underlying mechanism for the increasing skin permeability upon CAP treatment is still undefined. We propose a mechanism in which CAP-generated reactive species induce cross-linking of skin lipids, leading to the generation of nanopores, thereby facilitating the permeation of drug molecules. Molecular dynamics simulations support this proposed mechanism. Furthermore, our results indicate that to achieve maximum enhancement of the permeability, the optimal treatment will depend on the exact lipid composition of the skin, as well as on the CAP source used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000479747500001 Publication Date 2019-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited Open Access
Notes Approved Most recent IF: 2.846
Call Number (down) UA @ admin @ c:irua:161874 Serial 6287
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.
Title Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography Type A1 Journal article
Year 2019 Publication And Materials Abbreviated Journal
Volume 75 Issue 4 Pages 485-494
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600002 Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; The following funding is acknowledged: Fonds Wetenschappelijk Onderzoek (grant No. G040116N); Russian Foundation of Basic Research (grant No. 17-03-00370-a). ; Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:161846 Serial 5397
Permanent link to this record
 

 
Author Hadermann, J.; Palatinus, L.
Title Introducton to the special issue on electron crystallography Type Editorial
Year 2019 Publication And Materials Abbreviated Journal
Volume 75 Issue 4 Pages 462-462
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600028 Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:161845 Serial 5389
Permanent link to this record
 

 
Author Houben, K.; Jochum, J.K.; Lozano, D.P.; Bisht, M.; Menendez, E.; Merkel, D.G.; Ruffer, R.; Chumakov, A., I; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Couet, S.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title In situ study of the \alpha-Sn to \beta-Sn phase transition in low-dimensional systems : phonon behavior and thermodynamic properties Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 7 Pages 075408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The densities of phonon states of thin Sn films on InSb substrates are determined during different stages of the alpha-Sn to beta-Sn phase transition using nuclear inelastic x-ray scattering. The vibrational entropy and internal energy per atom as a function of temperature are obtained by numerical integration of the phonon density of states. The free energy as a function of temperature for the nanoscale samples is compared to the free energy obtained from ab initio calculations of bulk tin in the alpha-Sn and beta-Sn phase. In thin films this phase transition is governed by the interplay between the vibrational behavior of the film (the phase transition is driven by the vibrational entropy) and the stabilizing influence of the substrate (which depends on the film thickness). This brings a deeper understanding of the role of lattice vibrations in the phase transition of nanoscale Sn.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478992800005 Publication Date 2019-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO) and the Concerted Research Action (Grant No. GOA14/007). K.H., S.C., D.P.L., and E.M. wish to thank the FWO for financial support. The authors gratefully acknowledge the European Synchrotron Radiation Facility (ESRF) for the granted beam time and the use of the in situ UHV preparation chamber. The authors thank B. Opperdoes for technical support and T. Peissker and R. Lieten for fruitful discussions. ; Approved Most recent IF: 3.836
Call Number (down) UA @ admin @ c:irua:161836 Serial 5416
Permanent link to this record
 

 
Author Neven, L.; Thiruvottriyur Shanmugam, S.; Rahemi, V.; Trashin, S.; Sleegers, N.; Carrion, E.N.; Gorun, S.M.; De Wael, K.
Title Optimized photoelectrochemical detection of essential drugs bearing phenolic groups Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 15 Pages 9962-9969
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The World Health Organization (WHO) model “List of Essential Medicines” includes among indispensable medicines antibacterials and pain and migraine relievers. Monitoring their concentration in the environment, while challenging, is important in the context of antibiotic resistance as well as their production of highly toxic compounds via hydrolysis. Traditional detection methods such as high-performance liquid chromatography (HPLC) or LC combined with tandem mass spectrometry or UV-vis spectroscopy are time-consuming, have a high cost, require skilled operators and are difficult to adapt for field operations. In contrast, (electrochemical) sensors have elicited interest because of their rapid response, high selectivity, and sensitivity as well as potential for on-site detection. Previously, we reported a novel sensor system based on a type II photosensitizer, which combines the advantages of enzymatic sensors (high sensitivity) and photoelectrochemical sensors (easy baseline subtraction). Under red-light illumination, the photosensitizer produces singlet oxygen which oxidizes phenolic compounds present in the sample. The subsequent reduction of the oxidized phenolic compounds at the electrode surface gives rise to a quantifiable photocurrent and leads to the generation of a redox cycle. Herein we report the optimization in terms of pH and applied potential of the photoelectrochemical detection of the hydrolysis product of paracetamol, i.e., 4-aminophenol (4-AP), and two antibacterials, namely, cefadroxil (CFD, beta-lactam antibiotic) and doxycycline (DXC, tetracycline antibiotic). The optimized conditions resulted in a detection limit of 0.2 mu mol L-1 for DXC, but in a 10 times higher sensitivity, 20 nmol L-1, for CFD. An even higher sensitivity, 7 nmol L-1, was noted for 4-AP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480499200086 Publication Date 2019-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 2 Open Access
Notes ; FWO and UA-BOF are acknowledged for financial support. The Center for Functional Materials of Seton Hall University is thanked for support (S.M.G. and E.N.C.). Joren Van Loon is thanked for the graphical abstract. This research was supported by the medium scale research infrastructure funding Hercules funding (SEM). ; Approved Most recent IF: 6.32
Call Number (down) UA @ admin @ c:irua:161831 Serial 5763
Permanent link to this record
 

 
Author Bekaert, J.; Petrov, M.; Aperis, A.; Oppeneer, P.M.; Milošević, M.V.
Title Hydrogen-induced high-temperature superconductivity in two-dimensional materials : the example of hydrogenated monolayer MgB2 Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 123 Issue 7 Pages 077001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hydrogen-based compounds under ultrahigh pressure, such as the polyhydrides H3S and LaH10, superconduct through the conventional electron-phonon coupling mechanism to attain the record critical temperatures known to date. Here we exploit the intrinsic advantages of hydrogen to strongly enhance phonon-mediated superconductivity in a completely different system, namely, a two-dimensional material with hydrogen adatoms. We find that van Hove singularities in the electronic structure, originating from atomiclike hydrogen states, lead to a strong increase of the electronic density of states at the Fermi level, and thus of the electron-phonon coupling. Additionally, the emergence of high-frequency hydrogen-related phonon modes in this system boosts the electron-phonon coupling further. As a concrete example, we demonstrate the effect of hydrogen adatoms on the superconducting properties of monolayer MgB2, by solving the fully anisotropic Eliashberg equations, in conjunction with a first-principles description of the electronic and vibrational states, and their coupling. We show that hydrogenation leads to a high critical temperature of 67 K, which can be boosted to over 100 K by biaxial tensile strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480611900017 Publication Date 2019-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 42 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), the Rontgen-Angstrom Cluster, and the EU-COST Action CA16218. J.B. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). We would also like to acknowledge useful discussions with Bart Partoens, Jacques Tempere, and Matthieu Verstraete. ; Approved Most recent IF: 8.462
Call Number (down) UA @ admin @ c:irua:161816 Serial 5415
Permanent link to this record