|   | 
Details
   web
Records
Author Garzia Trulli, M.; Claes, N.; Pype, J.; Bals, S.; Baert, K.; Terryn, H.; Sardella, E.; Favia, P.; Vanhulsel, A.
Title Deposition of aminosilane coatings on porous Al2O3microspheres by means of dielectric barrier discharges Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600211
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Advances in the synthesis of porous microspheres and in their functionalization are increasing the interest in applications of alumina. This paper deals with coatings plasma deposited from 3-aminopropyltriethoxysilane by means of dielectric barrier discharges on alumina porous microspheres, shaped by a vibrational droplet coagulation technique. Aims of the work are the functionalization of the particles with active amino groups, as well as the evaluation of their surface coverage and of the penetration of the coatings into their pores. A multi-diagnostic approach was used for the chemical/morphological characterization of the particles. It was found that 5 min exposure to plasma discharges promotes the deposition of homogeneous coatings onto the microspheres and within their pores, down to 1 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410773200003 Publication Date 2017-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access OpenAccess
Notes The technical assistance of the VITO staff (Materials Dpt.) is gratefully acknowledged, especially D. Havermans, E. Van Hoof, R. Kemps (SEM-EDX), and A. De Wilde (Hg Porosimetry). Drs. S. Mullens and G. Scheltjens are kindly acknowledged for constructive discussions. Strategic Initiative Materials in Flanders (SIM) is gratefully acknowledged for its financial support. This research was carried out in the framework of the SIM-TRAP program (Tools for rational processing of nano-particles: controlling and tailoring nanoparticle based or nanomodified particle based materials). N. Claes and S. Bals acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.846
Call Number (down) EMAT @ emat @ c:irua:139511UA @ admin @ c:irua:139511 Serial 4342
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number (down) EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Pramanik, G.; Kvakova, K.; Thottappali, M.A.; Rais, D.; Pfleger, J.; Greben, M.; El-Zoka, A.; Bals, S.; Dracinsky, M.; Valenta, J.; Cigler, P.
Title Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters Type A1 Journal Article
Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 13 Issue 23 Pages 10462-10467
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Fluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin–orbit coupling, which in turn shortens the fluorescence decay lifetime (<italic>τ</italic><sup>PL</sup>). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased<italic>τ</italic><sup>PL</sup>upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine. The heavy atom-mediated increase in<italic>τ</italic><sup>PL</sup>is in striking contrast with the HAE and referred to as inverse HAE. Femtosecond and nanosecond transient absorption spectroscopy revealed overcompensation of a slight decrease in lifetime of the transition associated with the Au core (ps) by a large increase in the long-lived triplet state lifetime associated with the Au shell, which contributed to the observed inverse HAE. This unique observation of inverse HAE in gold nanoclusters provides the means to enhance the triplet excited state lifetime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links
Impact Factor 7.367 Times cited 7 Open Access OpenAccess
Notes The authors acknowledge support from GACR project Nr.18- 12533S. G. P. acknowledges support from EUSMI project No. E180200060; J.P. from the Ministry of Education, Youth and Sports of the Czech Republic – Program INTER-EXCELLENCE (LTAUSA19066). Approved Most recent IF: 7.367
Call Number (down) EMAT @ emat @ Serial 6950
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Kurttepeli, M.; de Blochouse, B.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Maes, A.; Kirschhock, C.E.A.; Breynaert, E.
Title Chabazite : stable cation-exchanger in hyper alkaline concrete pore water Type A1 Journal article
Year 2015 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 49 Issue 49 Pages 2358-2365
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K+ and Na+ cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs+ cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000349806400047 Publication Date 2015-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited 13 Open Access OpenAccess
Notes This work was supported by long-term structural funding by the Flemish Government (Methusalem) and by ONDRAF/ NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant no. 24691-COUNTATOMS, ERC Starting Grant no. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.198; 2015 IF: 5.330
Call Number (down) c:irua:127695 Serial 307
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.;
Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 27 Issue 27 Pages 2177-2181
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000352548900004 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 32 Open Access
Notes Approved Most recent IF: 19.791; 2015 IF: 17.493
Call Number (down) c:irua:126002 Serial 3545
Permanent link to this record
 

 
Author Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P.
Title N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2 Type A1 Journal article
Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 176-177 Issue 176-177 Pages 212-224
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A new, two-step nanocasting method was developed to prepare N-doped ordered mesoporous carbon (NOMC) electrocatalysts for the reduction of O2 to H2O2. Our strategy involves the sequential pyrolysis of two inexpensive and readily available N and C precursors, i.e. aniline and dihydroxynaphthalene (DHN), inside the pores of a SBA-15 hard silica template to obtain N-doped graphitic carbon materials with well-ordered pores and high surface areas (764 and 877 m2g−1). By tuning the ratio of carbon sources to silica template, it was possible to achieve an optimal filling of the pores of the SBA-15 silica and to minimise carbon species outside the pores. These NOMC materials displayed outstanding electrocatalytic activity in the oxygen reduction reaction, achieving a remarkably enhanced kinetic current density compared to state-of-the-art N-doped carbon materials (−16.7 mA cm−2 at −0.35 V vs. Ag/AgCl in a 0.1 M KOH solution as electrolyte). The NOMC electrocatalysts showed high selectivity toward the two-electron reduction of oxygen to hydrogen peroxide and excellent long-term stability.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000356549200022 Publication Date 2015-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 111 Open Access OpenAccess
Notes 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2015 IF: 7.435
Call Number (down) c:irua:125370 Serial 2246
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 2642-2649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000348990500019 Publication Date 2014-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 23 Open Access OpenAccess
Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number (down) c:irua:125298 Serial 2673
Permanent link to this record
 

 
Author Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F.
Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
Year 2015 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 5 Issue 5 Pages 754-768
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349275300031 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 65 Open Access OpenAccess
Notes 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312
Call Number (down) c:irua:125288 Serial 474
Permanent link to this record
 

 
Author Retuerto, M.; Yin, Z.; Emge, T.J.; Stephens, P.W.; Li, M.R.; Sarkar, T.; Croft, M.C.; Ignatov, A.; Yuan, Z.; Zhang, S.J.; Jin, C.; Paria Sena, R.; Hadermann, J.; Kotliar, G.; Greenblatt, M.;
Title Hole doping and structural transformation in CsTl1-xHgxCl3 Type A1 Journal article
Year 2015 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 54 Issue 54 Pages 1066-1075
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract CsTlCl3 and CsTlF3 perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl3 in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF3 as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl3 with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl1xHgxCl3 (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl0.9Hg0.1Cl3 is tetragonal as the more stable phase of CsTlCl3. However, CsTl0.8Hg0.2Cl3 is already cubic with the space group Fm3̅m and with two different positions for Tl+ and Tl3+. For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl+, Tl3+, and Hg2+. All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl+ and Tl3+. Raman spectroscopy shows the presence of the active TlClTl stretching mode over the whole series and the intensity of the TlClHg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000348887400048 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 5 Open Access
Notes Approved Most recent IF: 4.857; 2015 IF: 4.762
Call Number (down) c:irua:124420 Serial 1476
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J.
Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 148 Issue 148 Pages 10-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345973000002 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access OpenAccess
Notes Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number (down) c:irua:119083 Serial 2672
Permanent link to this record