toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.V.; Pourtois, G.; Vosch, T.; Hofkens, J.; van der Veen, M.H.; Heyns, M.M.; de Gendt, S.; Sels, B.F. doi  openurl
  Title Single layer vs bilayer graphene : a comparative study of the effects of oxygen plasma treatment on their electronic and optical properties Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 33 Pages 16619-16624  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This contribution presents the effects of a mild O2 plasma treatment on the structural, optical, and electrical properties of single-layer (SLG) and bilayer graphene (BLG). Unexpectedly, we observe only photoluminescence in the SLG parts of a graphene flake composed of regions of various thickness upon O2 plasma treatment, whereas the BLG and few-layer graphene (FLG) parts remain optically unchanged. Confirmed with X-ray photoelectron spectroscopy (XPS) that O2 plasma induces epoxide and hydroxyl-like groups in graphene, density functional theory (DFT) calculations are carried out on representative epoxidized and hydroxylated SLG and BLG models to predict density of states (DOS) and band structures. Sufficiently oxidized SLG shows a bandgap and thus loss of semimetallic behavior, while oxidized BLG maintains its semimetallic behavior even at high oxygen density in agreement with the results of the photoluminescence spectroscopy (PL) experiments. DFT calculations confirm that the Fermi velocity in epoxidized BLG is remarkably comparable with that of pristine SLG, pointing to a similarity of electronic band structure. The similarity is also experimentally demonstrated by the electrical characterization of a plasma-treated BLG-FET. As expected from the electronegative oxygen adatoms in the graphene, epoxidized BLG presents conductive features typical of hole doping. Moreover, the electrical characteristics suggest band structures closely related to that of epoxidized graphene while deviating from that of hydroxylated graphene. Finally, upon O2 plasma treatment of BLG, the four-component 2D peak around 2700 cm1 in the Raman spectrum evolves into a single Lorentzian line, very like the 2D peak of pristine SLG. Summarizing, the data in this contribution recommend that a controlled O2 plasma treatment, which is compatible with CMOS process flow in contrast to wet chemical oxidation methods, provides an efficient and valuable technique to exploit the transport properties of the bottom layer of BLG.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000294077000047 Publication Date 2011-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 46 Open Access  
  Notes Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number (up) UA @ lucian @ c:irua:91715 Serial 3024  
Permanent link to this record
 

 
Author Colomer, J.-F.; Marega, R.; Traboulsi, H.; Meneghetti, M.; Van Tendeloo, G.; Bonifazi, D. doi  openurl
  Title Microwave-assisted bromination of double-walled carbon nanotubes Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 20 Pages 4747-4749  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000270807800001 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number (up) UA @ lucian @ c:irua:94504 Serial 2080  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Vosch, T.; Fron, E.; Rodríguez, V.D.; Velázquez, J.J.; Kirilenko, D.; Van Tendeloo, G.; Hofkens, J.; Van der Auweraer, M.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions Type A1 Journal article
  Year 2012 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 2 Issue 4 Pages 1496-1501  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Bulk oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions have been prepared by a melt quenching technique. When excited in the absorption band of the Ag nanoclusters between 300 to 500 nm, these glasses emit a broad band characteristic of the Ag nanoclusters between 400 to 750 nm as well as an emission band between 900 to 1100 nm, originating from Yb3+ ions. The intensity ratio of the Yb3+/Ag emission bands increases with the Ag doping level at a fixed concentration of Yb3+, indicating the presence of energy transfer mechanism from the Ag nanoclusters to the Yb3+ ions. Comparison of time-resolved decay kinetics of the luminescence in the respectively Ag nanocluster-Yb3+ co-doped and single Ag nanocluster doped glasses, hints towards an energy transfer from the red and infrared emitting Ag nanoclusters to the Yb3+ ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299695300038 Publication Date 2011-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 46 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 3.108; 2012 IF: 2.562  
  Call Number (up) UA @ lucian @ c:irua:96239 Serial 1856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: