toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smets, W.; Wuyts, K.; Oerlemans, E.; Wuyts, S.; Denys, S.; Samson, R.; Lebeer, S. pdf  url
doi  openurl
  Title Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.) Type A1 Journal article
  Year 2016 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 147 Issue Pages 376-383  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The surface of the aerial parts of the plant, also termed the phyllosphere, is a selective habitat for microbes. The bacterial composition of the phyllosphere depends on host plant species, leaf characteristics, season, climate, and geographic location of the host plant. In this study, we investigated the effect of an urban environment on the bacterial composition of phyllosphere communities. We performed a passive biomonitoring experiment in which leaves were sampled from ivy (Hedera sp.), a common evergreen climber species, in urban and non-urban locations. Exposure to traffic-generated particulate matter was estimated using leaf biomagnetic analyses. The bacterial community composition was determined using 16S rRNA gene sequencing on the Illumina MiSeq. The phyllosphere microbial communities of ivy differed greatly between urban and non-urban locations, as we observed a shift in several of the dominant taxa: Beijerinckia and Methylocystaceae were most abundant in the non-urban phyllosphere, whereas Hymenobacter and Sphingomonadaceae were dominating the urban ivy phyllosphere. The richness, diversity and composition of the communities showed greater variability in the urban than in the non-urban locations, where traffic-generated PM was lower. Interestingly, the relative abundances of eight of the ten most dominant taxa correlated well with leaf magnetism, be it positive or negative. The results of this study indicate that an urban environment can greatly affect the local phyllosphere community composition. Although other urban-related factors cannot be ruled out, the relative abundance of most of the dominant taxa was significantly correlated with exposure to traffic-generated PM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388543600033 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:136110 Serial 8066  
Permanent link to this record
 

 
Author Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. pdf  doi
openurl 
  Title Airborne bacteria in the atmosphere : presence, purpose, and potential Type A1 Journal article
  Year 2016 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 139 Issue Pages 214-221  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379093900021 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:133711 Serial 7432  
Permanent link to this record
 

 
Author Van Grieken, R.E.; Johansson, T.B.; Akselsson, K.R.; Winchester, J.W.; Nelson, J.W.; Chapman, K.R. pdf  doi
openurl 
  Title Geophysical applicability of aerosol size distribution measurements using cascade impactors and proton-induced X-ray-emission Type A1 Journal article
  Year 1976 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 10 Issue 8 Pages 571-576  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Proton Induced X-ray Emission, (PIXE), is capable of high precision analysis for trace element components of aerosol particle size fractions sampled by cascade impactor. A statistical evaluation of data quality has been carried out in order to distinguish between analytical uncertainties in the PIXE procedure, errors caused by cascade impactor performance and by other factors in the sampling procedure, and geophysical causes of differences in composition and particle size distributions of the elements in aerosols. Replicate analyses and simultaneous samplings taken in north Florida and St. Louis have been used for the data evaluation. In addition to the analytical error the sampling procedure contributes an error of ~ 10% to be added quadratically. The resulting precision is sufficient to evaluate the data in geophysical terms. This is illustrated by means of sample sets taken simultaneously in an urban, forest and coastal environment of the same region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1976BZ75500001 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:113636 Serial 8000  
Permanent link to this record
 

 
Author Annegarn, H.J.; Van Grieken, R.E.; Dibby, D.M.; Von Blottnitz, F. pdf  doi
openurl 
  Title Background aerosol composition in the Namib Desert, South West-Africa (Namibia) Type A1 Journal article
  Year 1983 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 17 Issue 10 Pages 2045-2053  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A remote site in the Namib Desert was selected for sampling background aerosols in southern Africa, as one of a wide network of stations spanning the Southern Hemisphere in a programme designed to measure the background concentrations of trace elements in the atmosphere. A series of samples was collected over a 6-month period using a single-orifice cascade impactor, which fractionated the particles into six size groups. Analysis was performed using particle-induced X-ray emission (PIXE), yielding results for S, Cl, K, Ca, Ti, Mn, Fe, Br and Sr, and occasionally also for V, Cr, Ni, Cu, Zn and Pb. No direct correlations with wind direction were observed excluding strong local or regional sources of particles. K, Ca, Ti, Mn and Fe can be identified with a dust dispersion source. Cl, large particle S and Br, and part of the K and Sr are derived from sea spray. Relative to the soil components small particle K is not enriched as it normally is in regions with less scarce vegetation. Cr, V, Ni, Cu, Zn and Pb concentrations and enrichments in the aerosol are lower than practically all values measured at any other location hitherto. The concentration of the small particle sulphur, 200 ng m−3, is believed to be related to anaerobic conditions and plankton blooms in the ocean upwelling zones off Namibia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1983RP58300017 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:113623 Serial 7545  
Permanent link to this record
 

 
Author Bruynseels, F.; Storms, H.; Van Grieken, R.; Van der Auwera, L. doi  openurl
  Title Characterization of North-Sea aerosols by individual particle analyses Type A1 Journal article
  Year 1988 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 22 Issue 11 Pages 2593-2602  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract On aerosol and rain water samples, collected in the Southern Bight of the North Sea, single particle analyses were performed using both laser microprobe mass analysis and electron-probe X-ray microanalysis in combination with an automated image analysis system. In the aerosols collected from an air mass that had travelled from the Atlantic Ocean along the coast of North France, pure seasalt constituted the most abundant particle type, while aluminosilicates (mostly spherical fly-ash particles) amounted to about 20% and mixed seasalt/aluminosilicate, carbonaceous particles, CaSO4 and spherical iron oxides contributed each 510 %. In air masses that had a longer residence time over the continent, spherical iron oxides, carbonaceous particles and ammonium sulfates together made up 70 % of the total particle load. Seasalt particles were nearly all enriched in sulfate or nitrate, but they were seen to be washed out efficiently after a rain shower. In rain water, some 40 % of the particles appeared to be spherical or irregularly shaped aluminosilicates, from fly-ash and dust dispersal, but more than 50 % consisted of SiO2. The high relative abundance of these particles in rain water may be the result of Al leaching from fly-ash, or of more efficient scavenging by rain droplets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1988R523900028 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:113610 Serial 7632  
Permanent link to this record
 

 
Author Mmari, A.G.; Potgieter-Vermaak, S.S.; Bencs, L.; McCrindle, R.I.; Van Grieken, R. pdf  doi
openurl 
  Title Elemental and ionic components of atmospheric aerosols and associated gaseous pollutants in and near Dar es Salaam, Tanzania Type A1 Journal article
  Year 2013 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 77 Issue Pages 51-61  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Elemental and water-soluble ionic compounds (WSICs) of atmospheric aerosols (total suspended particulate TSP) and some gaseous pollutants (SO2, NO2 and O3) from a coastal, semi-urban and rural site in and near Dar es Salaam, Tanzania were investigated during dry and wet seasons of January 2005November 2007. Na+, Ca2+, SO42−, NO3− and Cl− made up the dominant fraction of WSICs during the dry season with average concentrations ranging from non-detectable (n.d.)5.4, 0.262.6, 0.7414.7, 0.41.5 and 1.13.4 μg m−3, respectively, while in the wet season, from n.d. up to 1.7, 1.2, 4.4, 2.1 and 3.0 μg m−3, respectively. The total air concentrations of the detected elements (Al, Si, S, Cl, K, Ca, Fe and Zn) showed seasonal and site-specific variation in the range of 7.526.6 with an average of 14.5 μg m−3. Most of the air concentrations of pollutants were observed to decrease with increasing distance from the coastal site, which is under urban and industrial pollutant emissions. Sulphur and nitrogen oxidation ratios during the dry season ranged from 0.08 to 0.91 and 0.013 to 0.049, respectively, while they were between 0.090.65 and 0.0020.095, respectively, in the wet season. These values indicate the photochemical oxidation of SO2 and a high extent of NO3−formation in the atmosphere. Neutralization ratios revealed the presence of acidic SO42− and NO3− aerosols. Principal component analysis identified sea spray, local combustion, vehicular traffic, biomass burning and re-suspended road dust as dominant sources of aerosols at the studied coastal and semi-urban sites. However, at the rural site, besides sea spray, crustal sources, soil dust re-suspension and long-range transport are the possible origins of suspended particulates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000324848500006 Publication Date 2013-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:108096 Serial 7882  
Permanent link to this record
 

 
Author Vos, P.E.J.; Nikolova, I.; Janssen, S. pdf  doi
openurl 
  Title A high-order model for accurately simulating the size distribution of ultrafine particles in a traffic tunnel Type A1 Journal article
  Year 2012 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 59 Issue Pages 415-425  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present a computational model for simulating the dispersion of traffic emitted particulate matter inside a road tunnel, with an emphasis on the number concentration of ultrafine particles (UFP). The model primarily calculates the size distribution of the particle number concentration at each location inside the tunnel. The proposed model differs from existing models in the sense that it uses a continuous representation of the size distribution based upon the high-order finite element method and that it solves the governing equations using the state-of-the-art discontinuous Galerkin method. Next to the traditional transport processes, the model also implements the most important aerosol transformation processes such as coagulation, condensation and dry deposition. It is shown that based upon parametrisations found in literature, the process of condensation in a traffic tunnel cannot properly be modelled. Therefore, we present a correction factor that allows for a better parametrisation. The adequate performance of the model is demonstrated by both a verification study and a validation study. For the verification we show that the discretisation error converges consistently while for the validation we compare the modelled results with a suitable set of data from a UFP measurement campaign in a Taiwanese traffic tunnel. The model is shown to correctly simulate the observed behaviour and by applying a statistical model evaluation we demonstrate that the proposed model meets widely accepted air quality model acceptance criteria. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309081100047 Publication Date 2012-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:101793 Serial 8033  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: