|   | 
Details
   web
Records
Author Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; Hruby, M.;
Title Glycogen as a biodegradable construction nanomaterial for in vivo use Type A1 Journal article
Year 2012 Publication Macromolecular bioscience Abbreviated Journal Macromol Biosci
Volume 12 Issue 12 Pages 1731-1738
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is demonstrated that glycogen as a biodegradable and inexpensive material coming from renewable resources can be used as a carrier for the construction of in vivo imaging nanoagents. The model system considered is composed of glycogen modified with gadolinium and fluorescent labels. Systematic studies of properties of these nanocarriers by a variety of physical methods and results of in vivo tests of biodegradability are reported. This represents, to the authors' best knowledge, the first such use of glycogen.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000312242600016 Publication Date 2012-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-5187; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.238 Times cited 22 Open Access
Notes 262348 ESMI; FWO; Hercules Approved Most recent IF: 3.238; 2012 IF: 3.742
Call Number (down) UA @ lucian @ c:irua:105286 Serial 1354
Permanent link to this record
 

 
Author Espona‐Noguera, A.; Živanić, M.; Smits, E.; Bogaerts, A.; Privat‐Maldonado, A.; Canal, C.
Title Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma‐Derived Oxidants in an In Ovo Cancer Model Type A1 Journal Article
Year 2024 Publication Macromolecular Bioscience Abbreviated Journal Macromolecular Bioscience
Volume Issue Pages
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP‐treated hydrogels (PTHs) are being explored for the local administration of CAP‐derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models. In this context, the present study explores for the first time the therapeutic potential of PTHs using an advanced in ovo cancer model. PTHs composed of alginate (Alg), gelatin (Gel), Alg/Gel combination, or Alg/hyaluronic acid (HA) combination are investigated. All embryos survived the PTHs treatment, suggesting that the in ovo model could become a time‐ and cost‐effective tool for developing hydrogel‐based anticancer approaches. Results revealed a notable reduction in CD44+ cell population and their proliferative state for the CAP‐treated Alg‐HA condition. Moreover, the CAP‐treated Alg‐HA formulation alters the extracellular matrix composition, which may help combat drug‐resistance. In conclusion, the present study validates the utility of in ovo cancer model for PTHs exploration and highlights the promising potential of Alg‐based PTHs containing HA and CAP‐derived RONS for cancer treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-5187 ISBN Additional Links
Impact Factor 4.6 Times cited Open Access
Notes Generalitat de Catalunya, SGR2022‐1368 ; European Cooperation in Science and Technology, COSTActionCA20114(TherapeuticalApplicationsofColdPlasmas) ; Approved Most recent IF: 4.6; 2024 IF: 3.238
Call Number (down) PLASMANT @ plasmant @ Serial 9263
Permanent link to this record