|   | 
Details
   web
Record
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R.
Title Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type A1 Journal article
Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 12 Issue 13 Pages 5211-5219
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186347900001 Publication Date 2024-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access
Notes Approved Most recent IF: 8.4; 2024 IF: 5.951
Call Number (up) UA @ admin @ c:irua:204774 Serial 9146
Permanent link to this record