Number of records found: 52
 | 
Citations
 | 
   web
Comparison between a radio-frequency and direct current glow discharge in argon by a hybrid Monte Carlo-fluid model for electrons, argon ions and fast argon atoms”. Bogaerts A, Gijbels R, Goedheer W, Spectrochimica acta: part B : atomic spectroscopy 54, 1335 (1999). http://doi.org/10.1016/S0584-8547(99)00080-4
toggle visibility
Fundamental studies on a planar-cathode direct current glow discharge: part 2: numerical modeling and comparison with laser scattering experiments”. Bogaerts A, Gijbels R, Gamez G, Hieftje GM, Spectrochimica acta: part B : atomic spectroscopy 59, 449 (2004). http://doi.org/10.1016/j.sab.2003.12.001
toggle visibility
Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge”. Bogaerts A, Gijbels R, Carman RJ, Spectrochimica acta: part B : atomic spectroscopy 53, 1679 (1998). http://doi.org/10.1016/S0584-8547(98)00201-8
toggle visibility
Behavior of the sputtered copper atoms, ions and excited species in a radio-frequency and direct current glow discharge”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 55, 279 (2000). http://doi.org/10.1016/S0584-8547(00)00142-7
toggle visibility
Calculation of crater profiles on a flat cathode in a direct current glow discharge, and comparison with experiment”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 52, 765 (1997)
toggle visibility
Comparison of argon and neon as discharge gases in a direct current glow discharge: a mathematical simulation”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 52, 553 (1997)
toggle visibility
Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 53, 437 (1998). http://doi.org/10.1016/S0584-8547(97)00148-1
toggle visibility
Description of the argon-excited levels in a radio-frequency and direct current glow discharge”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 55, 263 (2000). http://doi.org/10.1016/S0584-8547(00)00143-9
toggle visibility
Fundamental aspects and applications of glow discharge spectrometric techniques”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 53, 1 (1998). http://doi.org/10.1016/S0584-8547(97)00122-5
toggle visibility
Hybrid Monte-Carlo-fluid modeling network for an argon/hydrogen direct current glow discharge”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 57, 1071 (2002). http://doi.org/10.1016/S0584-8547(02)00047-2
toggle visibility
Comparison of calculated and measured optical emission intensities in a direct current argon-copper glow discharge”. Bogaerts A, Donko Z, Kutasi K, Bano G, Pinhao N, Pinheiro M, Spectrochimica acta: part B : atomic spectroscopy 55, 1465 (2000). http://doi.org/10.1016/S0584-8547(00)00253-6
toggle visibility
Laser ablation for analytical sampling: what can we learn from modeling?”.Bogaerts A, Chen Z, Gijbels R, Vertes A, Spectrochimica acta: part B : atomic spectroscopy 58, 1867 (2003). http://doi.org/10.1016/j.sab.2003.08.004
toggle visibility
Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation”. Bogaerts A, Chen Z, Autrique D, Spectrochimica acta: part B : atomic spectroscopy 63, 746 (2008). http://doi.org/10.1016/j.sab.2008.04.005
toggle visibility
Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation”. Bogaerts A, Chen Z, Spectrochimica acta: part B : atomic spectroscopy 60, 1280 (2005). http://doi.org/10.1016/j.sab.2005.06.009
toggle visibility
Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation”. Bogaerts A, Spectrochimica acta: part B : atomic spectroscopy 64, 1266 (2009). http://doi.org/10.1016/j.sab.2009.10.003
toggle visibility
Hybrid Monte Carlo: fluid model for studying the effects of nitrogen addition to argon glow discharges”. Bogaerts A, Spectrochimica acta: part B : atomic spectroscopy 64, 126 (2009). http://doi.org/10.1016/j.sab.2008.11.004
toggle visibility
Computer simulations of sample chambers for laser ablation-inductively coupled plasma spectrometry”. Bleiner D, Bogaerts A, Spectrochimica acta: part B : atomic spectroscopy 62, 155 (2007). http://doi.org/10.1016/j.sab.2007.02.010
toggle visibility
Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-sampling”. Bleiner D, Bogaerts A, Spectrochimica acta: part B : atomic spectroscopy 61, 421 (2006). http://doi.org/10.1016/j.sab.2006.02.007
toggle visibility
Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments”. Baguer N, Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 57, 311 (2002). http://doi.org/10.1016/S0584-8547(01)00385-8
toggle visibility
Design analysis of a laser ablation cell for inductively coupled plasma mass spectrometry by numerical simulation”. Autrique D, Bogaerts A, Lindner H, Garcia CC, Niemax K, Spectrochimica acta: part B : atomic spectroscopy 63, 257 (2008). http://doi.org/10.1016/j.sab.2007.11.032
toggle visibility
Optimization of operating parameters for inductively coupled plasma mass spectrometry : a computational study”. Aghaei M, Lindner H, Bogaerts A, Spectrochimica acta: part B : atomic spectroscopy 76, 56 (2012). http://doi.org/10.1016/j.sab.2012.06.006
toggle visibility
Change in silica sources in Roman and post Roman glass”. Aerts A, Janssens K, Velde B, Dijkman W, Spectrochimica acta: part B : atomic spectroscopy 58, 659 (2003). http://doi.org/10.1016/S0584-8547(02)00287-2
toggle visibility