Number of records found: 68
 | 
Citations
 | 
   web
Iron speciation in soda-lime-silica glass: a comparison of XANES and UV-vis-NIR spectroscopy”. Ceglia A, Nuyts G, Meulebroeck W, Cagno S, Silvestri A, Zoleo A, Nys K, Janssens K, Thienpont H, Terryn H, Journal of analytical atomic spectrometry 30, 1552 (2015). http://doi.org/10.1039/C5JA00046G
toggle visibility
Evaluation of manganese-bodies removal in historical stained glass windows via SR-\mu-XANES/XRF and SR-\mu-CT”. Cagno S, Nuyts G, Bugani S, De Vis K, Schalm O, Caen J, Helfen L, Cotte M, Reischig P, Janssens K, Journal of analytical atomic spectrometry 26, 2442 (2011). http://doi.org/10.1039/C1JA10204D
toggle visibility
Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis”. Borovinskaya O, Aghaei M, Flamigni L, Hattendorf B, Tanner M, Bogaerts A, Günther D, Journal of analytical atomic spectrometry 29, 262 (2014). http://doi.org/10.1039/c3ja50307k
toggle visibility
Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell”. Bogaerts A, Okhrimovskyy A, Gijbels R, Journal of analytical atomic spectrometry 17, 1076 (2002). http://doi.org/10.1039/b200746k
toggle visibility
Modeling of a millisecond pulsed glow discharge: investigation of the afterpeak”. Bogaerts A, Gijbels R, Jackson GP, Journal of analytical atomic spectrometry 18, 533 (2003). http://doi.org/10.1039/b212606k
toggle visibility
Improved hybrid Monte Carlo-fluid model for the electrical characteristics in an analytical radiofrequency glow discharge in argon”. Bogaerts A, Gijbels R, Goedheer W, Journal of analytical atomic spectrometry 16, 750 (2001). http://doi.org/10.1039/b103768b
toggle visibility
Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 13, 721 (1998). http://doi.org/10.1039/a802894j
toggle visibility
Calculation of cathode heating in analytical glow discharges”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 19, 1206 (2004). http://doi.org/10.1039/b400483c
toggle visibility
Computer simulation of an analytical direct current glow discharge in argon: influence of the cell dimensions on the plasma quantities”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 12, 751 (1997)
toggle visibility
Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 15, 441 (2000). http://doi.org/10.1039/a909779a
toggle visibility
Hybrid Monte Carlo-fluid model for a microsecond pulsed glow discharge”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 15, 895 (2000). http://doi.org/10.1039/b003398g
toggle visibility
Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 16, 239 (2001). http://doi.org/10.1039/b009289o
toggle visibility
Modeling of argon direct current glow discharges and comparison with experiment: how good is the agreement?”.Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 13, 945 (1998). http://doi.org/10.1039/a800329g
toggle visibility
Relative sensitivity factors in glow discharge mass spectrometry: the role of charge transfer ionization”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 11, 841 (1996). http://doi.org/10.1039/ja9961100841
toggle visibility
Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 15, 1191 (2000). http://doi.org/10.1039/b000519n
toggle visibility
Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments”. Bogaerts A, Chen Z, Bleiner D, Journal of analytical atomic spectrometry 21, 384 (2006). http://doi.org/10.1039/b514313f
toggle visibility
Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, and comparison with expansion in vacuum”. Bogaerts A, Chen Z, Journal of analytical atomic spectrometry 19, 1169 (2004). http://doi.org/10.1039/b402946a
toggle visibility
Inductively coupled plasma-mass spectrometry: insights through computer modeling”. Bogaerts A, Aghaei M, Journal of analytical atomic spectrometry 32, 233 (2017). http://doi.org/10.1039/C6JA00408C
toggle visibility
The afterglow mystery of pulsed glow discharges and the role of dissociative electron-ion recombination”. Bogaerts A, Journal of analytical atomic spectrometry 22, 502 (2007). http://doi.org/10.1039/b618035c
toggle visibility
Computer simulations of argon-hydrogen Grimm-type glow discharges”. Bogaerts A, Journal of analytical atomic spectrometry 23, 1476 (2008). http://doi.org/10.1039/b810599e
toggle visibility
The glow discharge: an exciting plasma”. Bogaerts A, Journal of analytical atomic spectrometry 14, 1375 (1999). http://doi.org/10.1039/a900772e
toggle visibility
Hydrogen addition to an argon glow discharge: a numerical simulation”. Bogaerts A, Journal of analytical atomic spectrometry 17, 768 (2002). http://doi.org/10.1039/b200025c
toggle visibility
Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges”. Bogaerts A, Journal of analytical atomic spectrometry 22, 13 (2007). http://doi.org/10.1039/b611436a
toggle visibility
Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated with computer simulations and experiments”. Bleiner D, Chen Z, Autrique D, Bogaerts A, Journal of analytical atomic spectrometry 21, 910 (2006). http://doi.org/10.1039/b602800d
toggle visibility
Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis”. Bleiner D, Bogaerts A, Journal of analytical atomic spectrometry 21, 1161 (2006). http://doi.org/10.1039/b607627k
toggle visibility
Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling”. Bleiner D, Belloni F, Doria D, Lorusso A, Nassisi V, Journal of analytical atomic spectrometry (2005). http://doi.org/10.1039/B509379C
toggle visibility
A novel gas inlet system for improved aerosol entrainment in laser ablation inductively coupled plasma mass spectrometry”. Bleiner D, Altorfer H, Journal of analytical atomic spectrometry (2005). http://doi.org/10.1039/B505248C
toggle visibility
Glow discharge optical emission spectrometry: moving towards reliable thin film analysis: a short review”. Angeli J, Bengtson A, Bogaerts A, Hoffmann V, Hodoroaba V-D, Steers E, Journal of analytical atomic spectrometry 18, 670 (2003). http://doi.org/10.1039/b301293j
toggle visibility
A mobile instrument for in situ scanning macro-XRF investigation of historical paintings”. Alfeld M, Pedroso JV, van Hommes ME, van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K, Journal of analytical atomic spectrometry 28, 760 (2013). http://doi.org/10.1039/C3JA30341A
toggle visibility
Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings”. Alfeld M, Janssens K, Dik J, de Nolf W, van der Snickt G, Journal of analytical atomic spectrometry 26, 899 (2011). http://doi.org/10.1039/C0JA00257G
toggle visibility