|   | 
Details
   web
Records
Author (down) Tafuri, F.; Granozio, F.M.; Carillo, F.; Lombardi, F.; Di Uccio, U.S.; Verbist, K.; Lebedev, O.; Van Tendeloo, G.
Title Josephson phenomenology and microstructure of YBaCuO artificial grain boundaries characterized by misalignment of the c-axes Type A1 Journal article
Year 1999 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 327 Issue Pages 63-71
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract YBa(2)Cu(3)O(7-delta) (YBCO) grain boundaries characterized by a misalignment of the c-axes (45 degrees c-axis tilt or 45 degrees c-axis twist) have been obtained by employing a recently implemented biepitaxial technique. Junctions based on these grain boundaries exhibit good Josephson properties useful for applications. High values of the I(C)R(N) product and a Fraunhofer-like dependence of the critical current on the magnetic field, differently from traditional biepitaxial junctions, have been obtained. The correlation between transport properties and microstructure has been investigated by Transmission Electron Microscopy (TEM), which was also performed on previously measured junctions. The presence of atomically clean basal plane (BP) faced tilt boundaries, among other types of interfaces, has been shown. The possibility of selecting these kinds of boundaries by controlling film growth, and their possible advantages in terms of reproducibility and uniformity of the junction properties an discussed. The possibility of employing these junctions to explore the symmetry of the order parameter is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000084325700008 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 7 Open Access
Notes Approved Most recent IF: 1.404; 1999 IF: 1.114
Call Number UA @ lucian @ c:irua:95180 Serial 1752
Permanent link to this record
 

 
Author (down) Tafuri, F.; Carillo, F.; Lombardi, F.; Granozio, F.M.; dii Uccio, U.S.; Testa, G.; Sarnelli, E.; Verbist, K.; Van Tendeloo, G.
Title YBa2Cu3O7-x Josephson junctions and dc SQUIDs based on 45\text{\textdegree} a-axis tilt and twist grain boundaries : atomically clean interfaces for applications Type A1 Journal article
Year 1999 Publication Superconductor science and technology T2 – International Superconductive Electronics Conference, JUN 21-25, 1999, BERKELEY, CALIFORNIA Abbreviated Journal Supercond Sci Tech
Volume 12 Issue 11 Pages 1007-1009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract YBa2Cu3O7-x artificial grain boundary Josephson junctions have been fabricated, employing a recently implemented biepitaxial technique. The grain boundaries can be obtained by controlling the orientation of the MgO seed layer and are characterized by a misalignment of the c-axes (45 degrees a-axis tilt or 45 degrees a-axis twist). These types of grain boundaries are still mostly unexplored. We carried out a complete characterization of their transport properties and microstructure. Junctions and de SQUIDs associated with these grain boundaries exhibit an excellent Josephson phenomenology and high values of the ICRN product and of the magnetic flux-to-voltage transfer parameter respectively. Remarkable differences in the transport parameters of tilt and twist junctions have been observed, which can be of interest for several applications. A maximum speed of Josephson vortices as calculated from the voltage step values of the order of 2 x 10(6) m s(-1) is obtained. These devices could also have some impact on experiments designed to study the symmetry of the order parameter, exploiting their microstructure and anisotropic properties. High-resolution electron microscopy showed the presence of perfect basal plane faced boundaries in the cross sections of tilt boundaries.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000083948400093 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 3 Open Access
Notes Approved Most recent IF: 2.878; 1999 IF: 1.728
Call Number UA @ lucian @ c:irua:102896 Serial 3565
Permanent link to this record
 

 
Author (down) Tadic; Peeters, F.M.
Title Electronic structure of the valence band in cylindrical strained InP/InGaP quantum dots in an external magnetic field Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E
Volume 12 Issue 1-4 Pages 880-883
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The multiband effective-mass model of cylindrical self-assembled quantum dots in a magnetic field normal to the layer of the quantum dots is presented. The strain distribution is computed by the valence force field method. The strain-dependent multiband Hamiltonian is modified into an axially symmetric form, which commutes with the total angular momentum F-2 = fh. where f denotes the total magnetic quantum number. The heavy hole and the light hole parts in the mixed hole state are resolved. It is found that the heavy hole component dominates in the ground states for both f = 1/2 and 3/2. The electronic structure exhibits numerous anticrossings between the hole levels. The Zeeman splitting between the +\f\ and -\f\ states is also computed. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000175206300217 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 1 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:95138 Serial 1016
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L.
Title Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 13 Issue 2/4 Pages 237-240
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000176869100035 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 5 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:62427 Serial 905
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.; Janssens, K.L.; Korkusinski, M.; Hawrylak, P.
Title Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots Type A1 Journal article
Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 92 Issue 10 Pages 5819-5829
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A comparative study is made of the strain distribution in cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots as obtained from isotropic elasticity theory, the anisotropic continuum mechanical model, and from atomistic calculations. For the isotropic case, the recently proposed approach [J. H. Davies, J. Appl. Phys. 84, 1358 (1998)] is used, while the finite-element method, the valence force field method, and Stillinger-Weber potentials are employed to calculate the strain in anisotropic structures. We found that all four methods result in strain distributions of similar shapes, but with notable quantitative differences inside the dot and near the disk-matrix boundary. The variations of the diagonal strains with the height of the quantum dot, with fixed radius, as calculated from all models, are almost linear. Furthermore, the energies of the band edges in the two types of quantum dots are extracted from the multiband effective-mass theory by inserting the strain distributions as obtained by the four models. We demonstrated that all strain models produce effective potentials for the heavy and light holes which agree very well inside the dot. A negligible anisotropy of all normal strains in the (x,y) plane is found, which, providing the axial symmetry of the kinetic part of the multiband effective-mass Hamiltonian, justifies the use of the axial approximation. Strain propagation along the vertical direction is also considered with the aim to study the influence of strain on the electron coupling in stacks of quantum dots. We found that the interaction between the strain fields of the individual quantum dots makes the effective quantum wells for the electrons in the conduction band shallower, thereby counteracting the quantum mechanical coupling. (C) 2002 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000178987200036 Publication Date 2002-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 73 Open Access
Notes Approved Most recent IF: 2.068; 2002 IF: 2.281
Call Number UA @ lucian @ c:irua:103327 Serial 3164
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.; Janssens, K.L.
Title Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/In0.49Ga0.51P self-assembled quantum dots Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue 16 Pages 165333-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of disk-shaped InP/InGaP self-assembled quantum dots is calculated within the effective-mass theory. The strain-dependent 6x6 multiband Hamiltonian for the valence band is simplified into an axially symmetric form. Both the continuum mechanical model, discretized by finite elements, and the isotropic model are used to calculate the strain distribution and their results are critically compared. The dependence of the electron and the hole energy levels on the dimensions of the quantum dot is investigated. We found that both the electron and hole energies are underestimated if the strain distribution is calculated by the isotropic elasticity theory. The agreement between the electron energies for the two approaches is better for thinner quantum dots. The heavy holes are confined inside the quantum dot, while the light holes are located outside the disk, but confined by the strain field near the edge of the disk periphery. We found that the (h) over bar /2 hole ground state crosses the 3 (h) over bar /2 ground state when the height of the quantum dot increases and becomes the ground state for sufficiently thick quantum disks. The higher hole levels exhibit both crossings between the states of the different parity and anticrossings between the states of the same parity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000175325000097 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 72 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:103361 Serial 819
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.
Title Binding of electrons, holes, and excitons in symmetric strained InP/ In0.49Ga0.51P triple quantum-dot molecules Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue Pages 195302,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000225477800080 Publication Date 2004-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69396 Serial 240
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.
Title Exciton states and magnetooptical transitions in stacks of InGaAs/GaAs self-assembled quantum rings Type A1 Journal article
Year 2007 Publication AIP conference proceedings Abbreviated Journal
Volume 893 Issue Pages 851-852
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electron, hole, and exciton states in the stacks composed of three strained (InGa)As quantum rings were computed. We found considerable influence of strain on both the single particle and exciton spectra, while the oscillator strength for exciton recombination is reduced by the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94659 Serial 1115
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.
Title Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs Type A1 Journal article
Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 16 Issue 47 Pages 8633-8652
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum mechanical coupling and strain in two vertically arranged InP/InGaP quantum dots is studied as a function of the size of the dots and the spacer thickness. The strain distribution is determined by the continuum mechanical model, while the single-band effective-mass equation and the multiband k (.) p theory are employed to compute the conduction and valence band energy levels, respectively. The exciton states are obtained from an exact diagonalization approach, and we also compute the oscillator strength for recombination. We found that the light holes are confined by strain to the spacer, which is the reason that the hole states exhibit coupling at much larger distances as compared with the electrons. At small d, the doublet structure of the hole energy levels arises as a consequence of the relocation of the light hole from the matrix to the regions located-outside the stack, close to the dot-matrix interface. When d varies, the exciton ground state exhibits numerous anticrossings with other states, which are related to the changing spatial localization of the hole as a function of d. The oscillator strength of the exciton recombination is strongly reduced in a certain range of spacer thicknesses, which effectively turns a bright exciton state into a dark one. This effect is associated with anticrossings between exciton energy levels.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000225796800016 Publication Date 2004-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes Approved Most recent IF: 2.649; 2004 IF: 2.049
Call Number UA @ lucian @ c:irua:99315 Serial 1116
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.
Title Excitonic properties of strained triple quantum-ring molecules Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 15 Pages 153305,1-153305,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The tunneling coupling in three vertically stacked (In,Ga)As/GaAs quantum rings is investigated. With increasing inter-ring separation (d), we find that the nonuniform strain results into a crossing of the lowest-energy electron states. Strain is also responsible for an increase in the ground electron energy above the level in the single quantum ring. The ground hole energy level exhibits decrease when d decreases, which is typical for antibonding states in an unstrained structure. These effects lead to a local maximum in the dependence of the ground-state exciton energy on d. Our theoretical results compare well with recent photoluminescence measurements but deviate considerably from the calculations for flat bands in quantum-ring molecules. We conclude that the nonuniform character of the strain distribution gives rise to a peculiar exciton hybridization in self-assembled quantum-ring molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000265944200018 Publication Date 2009-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77024 Serial 1123
Permanent link to this record
 

 
Author (down) Tadić, M.; Peeters, F.M.
Title Intersublevel magnetoabsorption in the valence band of p-type InAs/GaAs and Ge/Si self-assembled quantum dots Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 71 Issue Pages 125342,1-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000228923300115 Publication Date 2005-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69406 Serial 1716
Permanent link to this record
 

 
Author (down) Tadić, M.; Mlinar, V.; Peeters, F.M.
Title Multiband k\cdot p calculation of exciton diamagnetic shift in InP/InGaP self-assembled quantum dots Type A1 Journal article
Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 3rd International Conference on Quantum Dots (QD 2004), MAY 10-13, 2004, Max Bell Bldg Banff Ctr, Banff, Canada Abbreviated Journal Physica E
Volume 26 Issue 1-4 Pages 212-216
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Exciton states in self-assembled InP/In0.49Ga0.51P quantum dots subject to magnetic fields up to 50T are calculated. Strain and band mixing are explicitly taken into account in the single-particle models of the electronic structure, while an exact diagonalization approach is adopted to compute the exciton states. Reasonably good agreement with magneto-photoluminescence measurements on InP self-assembled quantum dots is found. As a result of the polarization and angular momentum sensitive selection rules, the exciton ground state is dark. For in-plane polarized light, the magnetic field barely affects the exciton spatial localization, and consequently the exciton oscillator strength for recombination increases only slightly with increasing field. For z polarized light, a sharp increase of the oscillator strength beyond 30 T is found which is attributed to the enhanced s character of the relevant portion of the exciton wave function. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000227249000045 Publication Date 2004-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 4 Open Access
Notes Approved Most recent IF: 2.221; 2005 IF: 0.946
Call Number UA @ lucian @ c:irua:103180 Serial 2215
Permanent link to this record
 

 
Author (down) Tadić, M.; Čukarić, N.; Arsoski, V.; Peeters, F.M.
Title Excitonic Aharonov-Bohm effect : unstrained versus strained type-I semiconductor nanorings Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 12 Pages 125307-125307,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study how mechanical strain affects the magnetic field dependence of the exciton states in type-I semiconductor nanorings. Strain spatially separates the electron and hole in (In,Ga)As/GaAs nanorings which is beneficial for the occurrence of the excitonic Aharonov-Bohm (AB) effect. In narrow strained (In,Ga)As/GaAs nanorings the AB oscillations in the exciton ground-state energy are due to anticrossings with the first excited state. No such AB oscillations are found in unstrained GaAs/(Al,Ga)As nanorings irrespective of the ring width. Our results are obtained within an exact numerical diagonalization scheme and are shown to be accurately described by a two-level model with off-diagonal coupling t. The later transfer integral expresses the Coulomb coupling between states of electron-hole pairs. We also found that the oscillator strength for exciton recombination in (In,Ga)As/GaAs nanorings exhibits AB oscillations, which are superimposed on a linear increase with magnetic field. Our results agree qualitatively with recent experiments on the excitonic Aharonov-Bohm effect in type-I (In,Ga)As/GaAs nanorings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294777400013 Publication Date 2011-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl), the EU NoE: SANDiE, and the Belgian Science Policy (IAP). The calculations were performed on the CalcUA and Seastar computer clusters of the University of Antwerp. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92326 Serial 1122
Permanent link to this record
 

 
Author (down) Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F.M.
Title The optical excitonic Aharonov-Bohm effect in a few nanometer wide type-I nanorings Type A1 Journal article
Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A
Volume 117 Issue 6 Pages 974-977
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The optical excitonic Aharonov-Bohm effect in type-1 three-dimensional (In, Ga)As/GaAs nanorings in theoretically explored. The single-particle states of the electron and the hole are extracted from the effective mass theory in the presence of inhomogeneous strain, and an exact numerical diagonalization approach is used to compute the exciton states and the oscillator strength fx for exciton recombination. We studied both the large lithographically-defined and small self-assembled rings. Only in smaller self-assembled nanorings we found optical excitonic AharonovBohm effect. Those oscillations are established by anticrossings between the optically active exciton states with zero orbital momentum. In lithographically defined rings, whose average radius is 33 nm, fx shows no oscillations, whereas in the smaller self-assembled nanoring with average radius of 11.5 nm oscillations in fx for the ground exciton state are found as function of the magnetic field that is superposed on a linear dependence. These oscillations are smeared out at finite temperature, thus photoluminescence intensity exhibits step-like variation with magnetic field even at temperature as small as 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Warszawa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.469 Times cited Open Access
Notes Approved Most recent IF: 0.469; 2010 IF: 0.467
Call Number UA @ lucian @ c:irua:84080 Serial 2474
Permanent link to this record
 

 
Author (down) Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B.
Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195307-195312
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319252200003 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109002 Serial 88
Permanent link to this record
 

 
Author (down) Szumniak, P.; Bednarek, S.; Partoens, B.; Peeters, F.M.
Title Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 10 Pages 107201
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A novel spintronic nanodevice is proposed that is able to manipulate the single heavy-hole spin state in a coherent manner. It can act as a single quantum logic gate. The heavy-hole spin transformations are realized by transporting the hole around closed loops defined by metal gates deposited on top of the nanodevice. The device exploits Dresselhaus spin-orbit interaction, which translates the spatial motion of the hole into a rotation of the spin. The proposed quantum gate operates on subnanosecond time scales and requires only the application of a weak static voltage which allows for addressing heavy-hole spin qubits individually. Our results are supported by quantum mechanical time-dependent calculations within the four-band Luttinger-Kohn model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700015 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 41 Open Access
Notes ; This work was supported by the Grant No. NN202 128337 from the Ministry of Science and Higher Education, as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advances Nanostructures” operated within the Foundation for Polish Science MPD Programme and cofinanced by European Regional Development Fund, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101849 Serial 3094
Permanent link to this record
 

 
Author (down) Szaszko-Bogar, V.; Peeters, F.M.; Foeldi, P.
Title Oscillating spin-orbit interaction in two-dimensional superlattices : sharp transmission resonances and time-dependent spin-polarized currents Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 235311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in themini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space-and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355956500003 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was partially supported by the European Union and the European Social Fund through Projects No. TAMOP-4.2.2.C-11/1/KONV-2012-0010 and No. TAMOP-4.2.2.A-11/1/KONV-2012-0060, and by the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. 116688. The ELI-ALPS Project (GOP-1.1.1-12/B-2012-0001) is supported by the European Union and cofinanced by the European Regional Development Fund. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126432 Serial 2534
Permanent link to this record
 

 
Author (down) Szaszko-Bogar, V.; Foeldi, P.; Peeters, F.M.
Title Oscillating spin-orbit interaction as a source of spin-polarized wavepackets in two-terminal nanoscale devices Type A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 13 Pages 135302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic transport through nanoscale devices with time-dependent Rashba-type spin- orbit interaction (SOI) can lead to spin-polarized wavepackets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. In particular, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytical solution of the time-dependent Schrodinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and the reflected waves.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access
Notes Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:116844 Serial 2533
Permanent link to this record
 

 
Author (down) Szalóki, I.; Varga, K.; Van Grieken, R.
Title Application of energy dispersive X-ray spectrometry for quantitative evaluation of sorption phenomena at solid-liquid interfaces Type A1 Journal article
Year 2000 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal
Volume 55 Issue Pages 1031-1038
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000088353100032 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:32124 Serial 7473
Permanent link to this record
 

 
Author (down) Szalóki, I.; Török, S.B.; Ro, C.-U.; Injuk, J.; Van Grieken, R.E.
Title X-ray spectrometry Type A1 Journal article
Year 2000 Publication Analytical chemistry Abbreviated Journal
Volume 72 Issue 12 Pages 211-233
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000087661500018 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:27850 Serial 8774
Permanent link to this record
 

 
Author (down) Szalóki, I.; Török, S.B.; Injuk, J.; Van Grieken, R.E.
Title X-ray spectrometry Type A1 Journal article
Year 2002 Publication Analytical chemistry Abbreviated Journal
Volume 74 Issue 12 Pages 2895-2918
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176253700020 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:39517 Serial 8773
Permanent link to this record
 

 
Author (down) Szalóki, I.; Szegedi, S.; Varga, K.; Braun, M.; Osán, J.; Van Grieken, R.
Title Efficiency calibartion of energy-dispersive detectors for application in quantitative x- and γ-ray spectrometry Type A1 Journal article
Year 2001 Publication X-ray spectrometry Abbreviated Journal
Volume 30 Issue Pages 49-55
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000166923700010 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:32611 Serial 7851
Permanent link to this record
 

 
Author (down) Szalóki, I.; Ro, C.-U.; Osán, J.; de Hoog, J.; Van Grieken, R.
Title Speciation and surface analysis of single particles using electron-excited X-ray emission spectrometry Type H3 Book chapter
Year 2004 Publication Abbreviated Journal
Volume Issue Pages 569-592 T2 - X-ray spectrometry: recent technologi
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:43878 Serial 8570
Permanent link to this record
 

 
Author (down) Szalóki, I.; Osán, J.; Worobiec, A.; de Hoog, J.; Van Grieken, R.
Title Optimization of experimental conditions of thin-window EPMA for ligh-element analysis of individual environmental particles Type A1 Journal article
Year 2001 Publication X-ray spectrometry Abbreviated Journal
Volume 30 Issue Pages 143-155
Keywords A1 Journal article; Laboratory Experimental Medicine and Pediatrics (LEMP); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000169194800003 Publication Date 2005-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:34102 Serial 8338
Permanent link to this record
 

 
Author (down) Szalóki, I.; Osán, J.; Van Grieken, R.E.
Title X-ray spectrometry Type A1 Journal article
Year 2006 Publication Analytical chemistry Abbreviated Journal
Volume 78 Issue 12 Pages 4069-4096
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000238252600016 Publication Date 2006-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:58857 Serial 8771
Permanent link to this record
 

 
Author (down) Szalóki, I.; Osán, J.; Van Grieken, R.E.
Title X-ray spectrometry Type A1 Journal article
Year 2004 Publication Analytical chemistry Abbreviated Journal
Volume 76 Issue 12 Pages 3445-3470
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000222011100014 Publication Date 2004-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:46259 Serial 8772
Permanent link to this record
 

 
Author (down) Szalóki, I.; Osán, J.; Ro, C.-U.; Van Grieken, R.
Title Quantitative characterization of individual aerosol particles by thin-window electron probe microanalysis combined with iterative simulation Type A1 Journal article
Year 2000 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal
Volume 55 Issue Pages 1017-1030
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000088353100031 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:31672 Serial 8441
Permanent link to this record
 

 
Author (down) Szalóki, I.; Braun, M.; Van Grieken, R.
Title Quantitative characterisation of the leaching of lead and other elements from glazed surfaces of historical ceramics Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume 15 Issue Pages 843-850
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000088267700006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:28426 Serial 8440
Permanent link to this record
 

 
Author (down) Szafran, B.; Poniedziałek, M.R.; Peeters, F.M.
Title Violation of Onsager symmetry for a ballistic channel Coulomb coupled to a quantum ring Type A1 Journal article
Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 87 Issue 4 Pages 47002,1-47002,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate a scattering of electron which is injected individually into an empty ballistic channel containing a cavity that is Coulomb coupled to a quantum ring charged with a single electron. We solve the time-dependent Schrödinger equation for the electron pair with an exact account for the electron-electron correlation. Absorption of energy and angular momentum by the quantum ring is not an even function of the external magnetic field. As a consequence we find that the electron backscattering probability is asymmetric in the magnetic field and thus violates Onsager symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000270146400017 Publication Date 2009-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access
Notes Approved Most recent IF: 1.957; 2009 IF: 2.893
Call Number UA @ lucian @ c:irua:79734 Serial 3847
Permanent link to this record
 

 
Author (down) Szafran, B.; Peeters, F.M.; Bednarek, S.; Chwiej, T.; Adamowski, J.
Title Spatial ordering of charge and spin in quasi-one-dimensional Wigner molecules Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue Pages 035401,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222996700089 Publication Date 2004-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69390 Serial 3063
Permanent link to this record