|   | 
Details
   web
Records
Author (down) Zou, H.; Krekels, T.; Van Tendeloo, G.; Wagener, G.; Buchgeister, M.; Hosseini, S.M.; Kopitzki, K.
Title Oxygen ordering and critical temperature plateaus in ABa2Cu3O7-d (A=Er, Nd, Sm, Yb), pp Type P3 Proceeding
Year 1992 Publication Abbreviated Journal
Volume Issue Pages 278-279
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Beijing Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4443 Serial 2547
Permanent link to this record
 

 
Author (down) Zhurkin, E.; Hou, M.; van Swygenhoven, H.; Pauwels, B.; Yandouzi, M.; Schryvers, D.; Van Tendeloo, G.; Lievens, P.; Verschoren, G.; Kuriplach, J.; van Peteghem, S.; Segers, D.; Dauwe, C.
Title Atomic scale modeling of supported and assembled nanoparticles Type P3 Proceeding
Year 2001 Publication Abbreviated Journal
Volume Issue Pages B8.2,1-6
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48391 Serial 186
Permanent link to this record
 

 
Author (down) Zhu, W.
Title Microbial resource management for mainstream partial nitritation/anammox : strategies to enhance the nitrogen conversion efficiency Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 207 p.
Keywords Doctoral thesis; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This thesis provides three potential ways to enhance the nitrogen removal efficiency of mainstream partial nitritation/anammox (PN/A), a key technology to enable energy-positive sewage treatment. In Chapter 1, the typical technologies to promote nitrogen removal efficiency are summarized. In Chapters 2 and 3, the concept ‘winter bioaugmentation with stored summer surplus sludge’ is proposed. Applying that, a cost-effective sludge preservation strategy is required. Preserving PN/A biomass without cooling and redox adjustment proved to be the cost-effective strategy. The reactivation of these stored sludges was also tested in low-temperature systems (15 and 10℃). Respectively 56% and 41% of granules activity compared to pre-storage activity (after Arrhenius-based temperature correction) could be recovered within a month (41% and 32% for flocs activity). In the end, the stored AnAOB bioaugmentation was successfully validated in the lab (20℃). In Chapter 4, a return-sludge nursery concept, applying the sidestream nitritation and blending the resulting effluent with mainstream effluent to achieve an intermediate temperature and nitrogen concentrations, is proposed. That led to a 33 – 36% increase in nitrogen removal efficiency. Arrhenius’ expectations (10 ℃ higher temperature, θ = 1.09) could only explain 49-51% of the activity increase in the nursery reactor, pointing to the role of other factors, e.g., the ~400% elevated electrical conductivity (15-16%), the 56-335% higher effluent nitrogen concentrations (12-14%), and the synergy and unknown factors (20-23%). Thus, the return-sludge biostimulation approach could also enhance nitrogen efficiency in the mainstream. In Chapter 5, the N2O emissions, linked to three typical nitrite-oxidizing bacteria (NOB) suppression strategies (low dissolved oxygen (DO) level, free ammonia (FA), and free nitrous acids (FNA) treatments) were tested in a biofilm system. A low emerged DO level (~0.60 mg O2 L-1) was effective to suppress NOB activity and decrease N2O emissions, but NOB adaptation gradually appeared after 200 days. Further NOB inhibition was successfully achieved by periodical (3 hours per week) FA (~30 mg NH3-N L-1) or FNA (~3 mg HNO2-N L-1) treatments. The FA treatment promoted N2O production, while the FNA treatment had no effect. Thus, PN/A systems should be operated at relatively low DO levels with periodical FNA treatment. In Chapter 6, the major findings proposed and the main conclusions drawn in this thesis are outlined. Beyond that, the possible design of a mainstream PN/A configuration that combined all described three technologies is demonstrated. Overall, the novel insights from this thesis potential to improve nitrogen removal efficiency in the mainstream.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:184236 Serial 8245
Permanent link to this record
 

 
Author (down) Zhao, H.
Title Vortex matter in superconductors with competing interactions : formation of vortex patterns and vortex dynamics Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:100630 Serial 3874
Permanent link to this record
 

 
Author (down) Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P.
Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203392 Serial 9042
Permanent link to this record
 

 
Author (down) Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H.
Title Startup strategies of deammonification reactors treating reject water from thermally hydrolyzed solids Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151113 Serial 8579
Permanent link to this record
 

 
Author (down) Zhang, Q.; Higgins, M.J.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H.
Title Minimizing recalcitrant organics and maximizing nitrogen removal linked to advanced biosolids processing at Blue Plains WWTP Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 12 p. T2 - IWA 2017 Conference on Sustainable Wast
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151107 Serial 8252
Permanent link to this record
 

 
Author (down) Zhang, Q.; De Clippeleir, H.; Shaw, A.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Chandran, K.; Vlaeminck, S.E.; Murthy, S.
Title Mechanistic understanding of microbial activity inhibition : case study on sidestream deammonification for digester supernatant pretreated by thermal hydrolysis Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 5 p. T2 - WEF/IWA Nutrient Removal and Recovery Co
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151133 Serial 8214
Permanent link to this record
 

 
Author (down) Zhang, Q.; De Clippeleir, H.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Chandran, K.; Vlaeminck, S.E.; Murthy, S.
Title Inhibition mechanisms affecting deammonification of dewatering filtrate from thermally hydrolyzed digested solid Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 9 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151123 Serial 8102
Permanent link to this record
 

 
Author (down) Zhang, Q.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S.
Title Sidestream deammonification on thermal hydrolysis process digestate : strategies to overcome nitritation inhibition Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 11 p. T2 - IWA Nutrient Removal and Recovery 2015:
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151147 Serial 8522
Permanent link to this record
 

 
Author (down) Zhang, L.
Title Effects of quantum confinement in nanoscale superconductors : from electronic density of states to vortex matter Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:126085 Serial 870
Permanent link to this record
 

 
Author (down) Zhang, L.
Title Characteristic diagnosis of atmospheric discharge plasma and kinetics study of reactive species Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages XVIII, 148 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low-temperature plasma has received extensive attention due to its promising application prospects in the field of air pollutants degradation and energy conversion. To fulfill the need for particular applications, constructing stable plasma sources and investigating the interaction mechanisms between plasma and substances have been hot research topics. This thesis reports the diagnosis and improvement of plasma sources, diagnosis of the active species in plasma and a modeling study of chemical kinetics processes. The main research contents are as follows: In Chapter 3, a diffuse sine AC dielectric barrier discharge (DBD) is successfully obtained by optimizing the electrode structure. It is found that using double-layer dielectric plates can limit the discharge current intensity and significantly improve the discharge uniformity. The electrical characteristics and gas temperature with different operating time show that the discharge stability is also improved by using double-layer dielectric plates. In Chapter 4, nanosecond pulses are employed to generate diffuse DBD plasmas. Three main discharge stages are distinguished by ICCD images, i.e., the streamer breakdown from the needle tip to the plate electrode, the regime transition from streamer to diffuse plasma, and the propagation of surface discharge on the plate electrode surface. The chapter reveales that in nanosecond pulsed discharges the vibrational temperature of N2 increases with the discharge duration, while the rotational temperature mainly stays constant, which means electron energy is transferred into the vibrational levels, but gas heating is not obvious during the discharge pulse. In Chapter 5, both sine AC DBD and nanosecond pulsed DBD, studied in Chapter 2 and 3, are used for formaldehyde degradation. It is found that nanosecond pulsed DBD has more homogenous characteristics, better stability, and lower plasma gas temperature. Moreover, the energy consumption of nanosecond pulsed DBD is much lower than that of AC DBD. In Chapter 6, a 0D chemical kinetics model is developed to investigate the underlying plasma chemistry of methane dry reforming in a nanosecond pulsed discharge. An overview of the dominant reaction pathways of CO2 and CH4 conversion into the major products is given. Furthermore, most of the CO2 molecules are populated into vibrational states during the pulse. Hence, the vibrational states of CO2 play an important role in its dissociation process. In general, this PhD thesis contributes to a better insight in the mechanisms of sinusoidal AC DBD and nanosecond pulsed DBD plasmas and their applications, i.e., decomposition of formaldehyde and dry reforming of methane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:183166 Serial 7605
Permanent link to this record
 

 
Author (down) Zhang, K.
Title Revealing the correlation between titania support properties and propylphosphonic acid modification by in-depth characterization Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages XVI, 262 p.
Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA)
Abstract Grafting organophosphonic acids modification (PAs) on metal oxides has shown to be a flexible technology to tune the surface properties of metal oxides for various applications. Nevertheless, there are still puzzles that need to be addressed, such as the correlations between metal oxides properties (types of surface reactive sites) and the modification (modification degree), the correlations between metal oxides properties and the properties of modified surfaces. Moreover, the currently used liquid-phase method for the grafting has associated impeding effects of solvent on tailoring the modification degrees, and also causes the formation of metal phosphonate side products. The solid-phase method can induce the unwanted changes in crystal phase of supports. Based on these questions, the three titania supports with divergent surface properties were selected as the metal oxides supports investigated, propylphosphonic acid (3PA) modification was carried out under the same synthesis conditions: four different concentrations, two solvents (water or toluene), and one reaction time (4 h) and temperature (90 ). MeOH chemisorption was introduced to probe the surface (un)reactive sites for 3PA modification. On the other hand, MeOH chemisorption and inverse gas chromatography (IGC) were combined to characterize the changes in surface polarity and acidic properties induced by the modification. Next, a solid-phase method, manual grinding, was proposed to graft 3PA on titania, avoiding the impeding effects of solvent on improving modification degree and the formation of the titania phosphonate side products, as well as preserving the crystal phase. The results indicate that methanol chemisorption can qualitatively analyze the surface active sites that are consumed by 3PA modification, its chemisorption capacity shows the consistent trend with the maximum modification degree, hereby revealing the kinds of interactions that are important in controlling surface coverage. Titania supports is found to play an important role in changes in surface polarity and acidic properties by charactering the three modified titania samples at a similar modification degree using the methanol chemisorption coupled with in-situ infrared and thermogravimetric-mass spectrometer, and the IGC. Moreover, IGC provides additional information about the changes in binding modes. Furthermore, grafting 3PA modification on titania was achieved by manual grinding. Compared to the liquid-phase method, the maximum modification degree obtained by the manual grinding is 25 % higher while using 83.3 % or 75.0% lower amounts of expensive 3PA and limiting the formation of titania phosphonate side products. Compared to the reactive milling method, the proposed manual grinding method preserves the crystal phase(s) of titania.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198726 Serial 8924
Permanent link to this record
 

 
Author (down) Zhang, H.
Title Optical diagnostics of spatiotemporal evolution characteristics of nanosecond laser-induced plasma in gases Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 117 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:171436 Serial 6572
Permanent link to this record
 

 
Author (down) Zezza, F.; Torfs, K.; Van Grieken, R.; García Pascua, N.; Macri, F.
Title Study of environmental effects on deterioration of monuments: case study the cathedral of Bari, Italy Type P3 Proceeding
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:14665 Serial 8597
Permanent link to this record
 

 
Author (down) Zarenia, M.
Title Confined states in mono- and bi-layer grapheme nanostructures Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:108668 Serial 485
Permanent link to this record
 

 
Author (down) Zanaga, D.
Title Advanced algorithms for quantitative electron tomography Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:146571 Serial 4736
Permanent link to this record
 

 
Author (down) Yusupov, M.
Title Atomic scale simulations for a better insight in plasma medicine Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:117837 Serial 188
Permanent link to this record
 

 
Author (down) Yu, C.-P.
Title Novel imaging methods of transmission electron microscopy based on electron beam scattering and modulation Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages x, 154 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is a technique that uses an electron beam to analyze materials. This analysis is based on the interaction between the electron beam and the sample, such as photon emission and electron diffraction pattern, to name a few. Sample damage, however, also occurs when such interaction alters the structure of the sample. To ensure information from the undamaged material can be acquired, the electron expense to probe the material is thus limited. In this work, we propose efficient methods for acquiring and processing the information originating from the electron-sample interaction so that the study of the material and the conducting of the TEM experiment can be less hindered by the limited dose usage. In the first part of the work, the relationship between the scattering of the electron and the local physical property of the sample is studied. Based on this relationship, two reconstruction schemes are proposed capable of producing high-resolution images at low-dose conditions. Besides, the proposed reconstructions are not restricted to complete datasets but instead work on pieces of data, therefore allowing live feedback during data acquisition. Such feature of the methods allows the whole TEM experiment to be carried out under low dose conditions and thus further reduces possible beam damage on the studied material. In the second part of the work, we discuss our approach to modulating the electron beam and its benefits. An electrostatic device that can alter the wavefront of the passing electron wave is introduced and characterized. The beam-modulation ability is demonstrated by creating orthogonal beam sets, and applications that exploit the adaptability of the wave modulator are demonstrated with both simulation and experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 987-90-5728-534-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200885 Serial 9064
Permanent link to this record
 

 
Author (down) Ysebaert, T.
Title Modelling and experimental validation of deposition on vegetation to facilitate urban particulate matter mitigation Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xxvi, 234 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Exposure to air pollution, such as particulate matter (PM), causes adverse health effects, particularly to the respiratory tract and cardiovascular system. PM is the collective name for all kinds of particles ranging from small particles and liquid droplets, which contain organic compounds, acids and metals, to soil or dust particles. One distinguishes PM10, PM2.5 and PM0.1, which have aerodynamic particle sizes smaller than 10, 2.5 and 0.1 µm, respectively. It is mainly the latter that is the most harmful, as PM0.1 penetrates deep into the respiratory system and carries relatively more toxic substances than the other PM fractions. Over a 15-year period, PM concentrations in European member states have fallen by about 30%. Nevertheless, the World Health Organisation (WHO) air quality guidelines, which became stricter in 2021, are exceeded in most places around the world. Particularly in cities, excessive levels of PM are measured and it is here that PM mitigation should be investigated. For this, the implementation of urban green infrastructure, including trees, shrubs, green roofs and green walls, is being looked at. Plants hinder airflow and remove PM from the air by deposition on their leaves and branches. This process is known as dry deposition. Plants can capture PM very efficiently, due to their complex structure of leaves and branches. Green walls offer significant advantages over other types of urban green infrastructure because they can grow on the huge available wall area and, because they do not hinder air circulation, as we sometimes see with trees. Green walls are believed to have a much greater, untapped potential to reduce PM pollution. However, a literature review showed that we do not know the quantitative impact of green walls and lack the tools and/or general methodology to do so. The objective of this thesis is therefore to develop a method for assessing PM removal by green walls, based on predictive models and based on relevant parameters that are experimentally determined. Computational fluid dynamics (CFD) is a numerical method to simulate airflow in complex environments such as cities. These models can also simulate the vegetation-wind interaction in detail and are interesting tools to assess the effect of green walls on PM concentrations in real environments. It is important to first study the aerodynamic effect of green walls and parameterise it correctly in CFD models. Plants decrease the wind speed and create turbulence through a combination of viscous and form drag, which are determined by the permeability (K) and drag coefficient (Cd), respectively. Wind tunnel experiments were conducted with three commonly found climbers (Hedera helix, Parthenocissus tricuspidata and Parthenocissus quinquefolia) and the variation of leaf area density was investigated for two of them. It was observed that the air resistance depended on plant species, leaf area density and wind speed. The difference between the plant species was assigned to the functional leaf size (FLS), the ratio of the largest circle within the boundaries of the leaf to the total leaf area. FLS is likely associated with other morphological characteristics of plants that, when considered collectively, provide a more comprehensive representation of leaf complexity. The pressure and velocity measurements obtained were used to optimise the permeability and drag coefficient in a CFD model. At wind speeds below 0.6 m s-1, the resistance was mainly determined by viscous drag and a larger leaf size resulted in a higher viscous drag. At wind speeds above 1.5 m s-1, form drag was dominant and the parameterised Cd decreased with increasing wind speed due to the sheltering effect of successive plant elements. The leaf area density had a significant effect on K and Cd and, is therefore an important plant parameters in CFD models. The main conclusion here is that the common practice of using a constant Cd to model the influence of plants on the air flow leads to deviations from reality. Wind tunnels are highly suitable to study the impact of green walls on PM concentration under controlled environmental conditions. For this purpose, a new wind tunnel setup was built and great attention was paid to obtaining a uniform air flow. Thus, based on CFD models, appropriate flow controllers were chosen, consisting of honeycombs and screens with different mesh sizes. New PM generation devices and measuring equipment were installed and set up appropriately. Devices were available for generating and measuring ultrafine dust (<0.1 µm, i.e. PM0.1) and fine dust (<0.3 µm, i.e. PM0.3) consisting of soot particles, and, on the other hand, fine dust with particle sizes smaller than 2.5 (PM2.5) and 10 µm (PM10) consisting of 'Arizona fine test dust'. With the new wind tunnel setup, it was possible to measure the influence of Hedera helix (common ivy), grown in a planter against a climbing aid, on the PM concentration and this was expressed by a collection efficiency, i.e. the difference in concentration in front and behind the plants normalised for the incoming concentration. The collection efficiency of H. helix depended on the particle size of the PM and wind speed. The collection efficiency decreased when the particle size increased from 0.02 to 0.2 µm and increased again for particle sizes above 0.3 µm. The collection efficiency also increased with increasing wind speed, especially for particle sizes > 0.03 µm. On the other hand, relative humidity and the type of PM (soot or dust) did not significantly affect the collection efficiency. The main objective of this study was to obtain an optimised size-resolved deposition model. Dry deposition occurs through several mechanisms, in particular gravity, diffusion, impaction and interception, and the subsequent resuspension of deposited PM back to the environment. The modelling of these mechanisms was described by \citet{Zhang2001} and \citet{Petroff2010}. The data obtained from the wind tunnel experiments allowed validating these deposition models. It was for the first time that deposition of real PM on green walls was studied. The different PM deposition mechanisms were found to be strongly dependent on particle size and wind speed. The models of \citet{Zhang2001} and \citet{Petroff2010} each matched PM concentration measurements for only certain particle sizes. Therefore, a combination of the two models was investigated and the root mean square error was lower by on average 3.5% (PM < 0.03 µm) and 46% (PM > 0.03 µm) compared to the original models at wind speeds greater than 1.5 m s-1. For wind speeds less than 1.5 m s-1, the optimised model did not differ from the original models. The optimised model was able to meet the imposed criteria for air quality models, where a correct model exhibits low deviation from measurements ('normalised mean square error' < 1.5), low bias ('fractional bias' between -0.3 and 0.3) and high R2. In comparison, the R$2$ of the optimised model was 0.57, while that of Zhang et al. (2001) and Petroff et al. (2010) was 0.23 and 0.31, respectively. The optimised model was however characterised by a high scatter, with the fraction of modeled results located within a factor of two of the measurements being lower than 50. A model study with a green façade oriented parallel to the incoming airflow showed that deposition by interception and impaction reduced remarkably, but that the orientation had no effect on deposition by Brownian diffusion. A promising green wall form for PM mitigation is the living wall system (LWS). LWS consist of supporting structures with substrate to grow plants in and can be planted with a variety of plant species. This allows to select plant species with optimal characteristics to achieve PM deposition. These characteristics refer to the macro- and microstructure of the leaves, and research has been conducted mainly on these. On the other hand, the influence of the supporting structure and substrate on PM concentrations has rarely been studied. With the new wind tunnel setup, LWS from different manufacturers were tested for their ability to capture PM. The setups were subjected for three hours to an air flow with a low PM concentration (resuspension phase) and then for three hours to an air flow to which additional PM was added (deposition phase). Some setups were able to decrease the PM concentration during both phases, while others just caused the concentration to increase. Some systems were able to reduce particulate matter concentration during both phases, namely LWS consisting of planters (-2% and -4% for PM0.1 and PM2.5, respectively) and textile cloths (-23% and -5% for PM0.1 and PM2.5, respectively). While other systems actually resulted in an increase in concentration especially LWS existing textile fabrics consisting of geotextiles (+11% for both PM fractions) and with moss as substrate (+2% and +5% for PM0.1 and PM2.5, respectively). This highlights the importance of careful selection of suspension systems to reduce particulate matter concentrations. Further research is therefore needed on the materials used in these systems in relation to their particulate content, as well as on plant development in these systems. In addition to air measurements, measurements were taken of the amount of PM deposited on the leaves and suspension system of LWS. This allowed the difference in PM resuspension and deposition between plant species to be investigated. The amount of deposited particulate matter was determined based on 'saturation isothermal remanent magnetisation' (SIRM), a measure of magnetisable particulate matter. This was possible because the added 'Arizona fine test dust' contained iron oxide. However, no significant difference was observed between the SIRM values measured before the wind tunnel experiment, after resuspension and after deposition. This suggested that the iron oxide content in the Arizona fine test dust was too low to measure a significant difference in the SIRM values on leaves after three hours. The plant species did give rise to different SIRM values ranging between 5 and 260 µ A. In particular, SIRM values above 26 µ A were observed for the plant species that were grouped due to their significantly higher accumulation of PM. 'Specific leaf area' (SLA), specifically the ratio of the one-sided 'fresh' leaf area to its dry mass, was the significant leaf characteristic. SLA correlated with leaf complexity. In particular, plant species with elongated leaves were characterized by low SLA, high FLS and high complexity and showed significantly higher SIRM values. Finally, the optimised size-resolved deposition model was also tested in an urban model to get an idea of the impact of a green wall on PM concentrations in a so-called 'street canyon'. These are narrow streets with high buildings on both sides, making air pollution more persistent. To this end, an ideal scenario was tested in which a green wall was introduced along both sides of the street over a length of about 270 m. The model result showed a decrease in PM2.5 and PM10 of 46 ± 12% and 52 ± 14%. This result is of course for a very optimal scenario where the green wall covers the entire building façades. Since this is not feasible in reality, other ways of promoting contact between green walls and polluted air can be explored. The insights obtained illustrate that the use of climbing plants can be a cost-effective and environmentally friendly solution to reduce PM concentrations. Moreover, the findings showed that models can be used to investigate the impact of green walls on PM levels. These findings fit within the broader context of designing healthy and sustainable urban environments and developing innovative solutions based on solid scientific knowledge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199439 Serial 8900
Permanent link to this record
 

 
Author (down) Yao, X.
Title An advanced TEM study on quantification of Ni4Ti3 precipitates in low temperature aged Ni-Ti shape memory alloy Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 149 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164987 Serial 6284
Permanent link to this record
 

 
Author (down) Yang, T.
Title Characterization of Laves phase structural evolution and regulation of its precipitation behavior in Al-Zn-Mg based alloys Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages ii, 106 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Al-Zn-Mg-based high strength alloys are widely used in aerospace applications due to their low density and excellent mechanical properties. A systematic study of the structural evolution of the nano-precipitation phase and its growth mechanism is an important guide for the design of new high-strength alloys. In this work, the Laves structure precipitates in Al-Zn-Mg(-Cu/Y) alloy was systematically characterized. Based on the structure evolution, the structure of submicron Laves particles and quasicrystalline particles in the alloy at microscale, as well as the regulation of the precipitation behavior after adding Y at nanoscale were further investigated. The main innovative results are summarized as follows: (1) Investigation on coexistence of defect structures in Laves structural nanoprecipitates. Three types of Laves structures can coexist within the η-MgZn2 precipitates: C14, C15 and C36, and the Laves structure transition sequence of C14→C36→C15 in this system was determined. Meanwhile, it was found that there are diverse defect structures in the MgZn2 phase, including stacking faults, planar defects and five-fold domain structures, which have significant effects on relieving the internal stress/strain of the precipitates. (2) Investigation on multiple phase transition of Laves structural nanoprecipitates from C14 to C36 and from C14 to quasicrystal clusters. It is found that C14 precipitates can be completely transformed into the C36 precipitates. And it is also found that the C14 Laves phase structure can also transform into quasicrystalline clusters. These investigations on various phase transition mechanisms among Laves phases provide theoretical support for the microstructural characterization of materials containing multi-scale Laves phases. (3) Characterization of Laves and quasicrystal structural particles in submicron scale. Submicron-scale quasicrystal particles were obtained in conventional casting Al-Zn-Mg-Cu alloys for the first time. Industrial impurity elements Fe and Ni can induce the formation of quasicrystalline particles. When there is no Fe/Ni enriched in particles, the structure is characterized as C15-Laves phase. When Fe/Ni is as quasicrystalline core, a stable core-shell quasicrystalline structure with Al-Fe-Ni nucleus and Mg-Cu-Zn shell can be formed. (4) Investigation on the regulation of nanoscale Laves precipitates’ growth. To regulate the defect structure of the precipitates, rare earth element Y was added in Al-Zn-Mg alloys and its influence on the precipitation behavior was investigated. The addition of Y element can dynamically combine with different alloying elements during aging process, which can refine the size of precipitate and further improve the nucleation rate and precipitation rate of the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196404 Serial 7631
Permanent link to this record
 

 
Author (down) Xu, W.; Vasilopoulos, P.; Das, M.P.; Peeters, F.M.
Title Self-consistent g* factor and spin-split Landau levels in strong magnetic fields and at low temperatures Type P3 Proceeding
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 743-746
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:12203 Serial 2974
Permanent link to this record
 

 
Author (down) Xu, W.
Title Plasma-catalytic DRM : study of LDH derived catalyst for DRM in a GAP plasma system Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 350 p.
Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is considered one of the promising technologies to solve greenhouse gas problems, as it can activate CO2 and CH4 at relatively low temperatures. Among the various types of plasmas, the gliding arc plasmatron (GAP) is promising, as it has a high level of non-equilibrium and high electron density. Nevertheless, the conversion of CO2 and CH4 in the GAP reactor is limited. Therefore, combining the GAP reactor with catalysts and making use of the heat produced by the plasma to provide thermal energy to the catalyst, forming a post-plasma catalytic (PPC) system, is hypothesized to improve its performance. Therefore, in this PhD research, we investigate important aspects of the PPC concept towards the use of the heat produced by GAP plasma to heat the plasma bed, without additional energy input. Aiming at this, based on a literature study (chapter 1), Ni-loaded layered double hydroxide (LDH) derived catalyst with good thermal catalytic DRM performance were chosen as the catalyst material. Before applying the LDH as a support material, the rehydration property of calcined LDH in moist and liquid environment was studied as part of chapter 2. The data indicated that after high temperatures calcination (600-900 C), the obtained layered double oxides (LDOs) can rehydrate into LDH, although, the rehydrated LDH were different from the original LDH. In chapter 3, different operating conditions, such as gas flow rate, gas compositions (e.g. CH4/CO2 ratio and nitrogen dilution), and addition of H2O were studied to investigate optimal conditions for PPC DRM, identifying possible differences in temperature profiles and exhaust gas compositions that might influence the catalytic performance. Subsequently, the impact of different PPC configurations, making use of the heat and exhaust gas composition produced by the GAP plasma, is shown in Chapter 4. Experiments studying the impact of adjusting the catalyst bed distance to the post-plasma, the catalyst amount, the influence of external heating (below 250 C) and the addition of H2O are discussed. As only limited improvement in the performance was achieved, a new type of catalyst bed was designed and utilized, as described in chapter 5. This improved configuration can realize better heat and mass transfer by directly connecting to the GAP device. The performance was improved and became comparable to the traditional thermal catalytic DRM results obtained at 800 C, although obtained by a fully electrically driven plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201534 Serial 9074
Permanent link to this record
 

 
Author (down) Xu, B.
Title Magnetic, calorimetric and electronic properties of vortex states in (3D) mesoscopic superconductors Type Doctoral thesis
Year 2011 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:91833 Serial 1863
Permanent link to this record
 

 
Author (down) Xie, Y.
Title Bioreactor strategies for sustainable nitrogen cycling based on mineralization/nitrification, partial nitritation/anammox or sulfur-based denitratation Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages iv, 205 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the biogeochemical flows on Earth, the reactive nitrogen (Nr) level has three times surpassed the safe boundary. The severe transgression of this boundary goes against sustainable planetary development. The modern food production process excessively relies on synthetic Nr fertilizers from the Haber– Bosch process. However, the massive loss of valuable nitrogen resources (i.e., 78-89%) from agriculture has been causing severe nitrogen cascade. Besides, the domestic wastewater in some local areas is discharged without proper treatment, making it a nonnegligible source of Nr pollution for local water bodies. Anthropogenic activities keep pumping out Nr pollution via point-source and non-point-source (NPS) emissions. Compared to the NPS emissions, point sources give visible and identified waste streams. It is vital to intervene the nitrogen cascade from point sources and facilitate humanity back to the safe Nr boundary. The collected and collectible Nr streams from food production, waste management, and recycling secondary raw materials can be used as waste-based fertilizers for agricultural cultivation. Besides the well-investigated recovery of inorganic Nr, organic Nr accounts for a massive Nr proportion on the Earth. Proper handling and treatment make these useful organic fertilizers for soil-based cultivation. However, these organic Nr fertilizers cannot directly apply to fertigation or hydroponic cultivation systems, and further biological conversion via nitrogen mineralization and nitrification to nitrate is essential. Besides the direct Nr cycling, the indirect Nr cycling ‘over the atmosphere’ should also be considered. In this way, the nitrogen cycle can be completed via converting the waste Nr back to nitrogen gas (i.e., Nr removal) and then synthesizing into Nr again. The municipal wastewater treatment plants receive a vast amount of low-strength Nr wastewater (mainly as ammonium) daily. Compared to the conventional nitrification/denitrification process, partial nitritation/anammox (PN/A) is considered a resource- and cost-effective technology for wastewater with a low COD/N ratio. Moreover, the novel autotrophic denitratation/anammox process could be a good Nr removal process for wastewater containing both ammonium and nitrate. This Ph.D. thesis aimed to develop Nr recovery, conversion, and removal bioreactor strategies for different types of waste streams and biomass. Nr recovery was investigated on high-strength Nr waste streams for fertigation or hydroponic applications in Chapters 2 and 3. On the other hand, Nr removal was studied on the medium- to low-strength Nr waste streams in Chapters 4 and 5. In Chapter 2, a novel mineralization and nitrification system was proposed, producing nutrient solutions from solid organic fertilizers for hydroponic systems. Batch tests showed that aerobic incubation at 35°C could realize the NO₃⁻-N production efficiency above 90% from a novel microbial fertilizer. Subsequently, in the stirred tank bioreactor test, NO₃⁻-N production efficiency stabilized in a range of 44-51% under the influent loading rate of 400 mg TN L⁻¹ d⁻¹ at a 5-day HRT. Using Ca(OH)₂ and Mg(OH)₂ as pH control reagents generated the nutrient solutions with different P, Ca, and Mg nutrient levels. After modeling the nutrient balancing process, the proportion of organic-sourced NO₃⁻-N in the Hoagland nutrient solution (HNS) of Ca(OH)₂ scenario was 92.7%, while only 37.4% in the Mg(OH)₂ scenario. Compared to commercial scenarios, the total costs of the organic-sourced HNS can be cost-competitive for hydroponic cultivation. In Chapter 3, the Nr recovery as nitrate (NO₃⁻-N) from diluted human urine (around 670 mg N L⁻¹) was explored in a trickling filter (TF) for the first time. A novel concept of in-situ integrating the TF system into hydroponic systems was proposed as meaningful progress towards sustainable agriculture. The difference between synthetic and real urine in nitrification efficiency was found to be negligible. The full nitrification of alkalinized real urine was realized in the pH-controlled TF by calcium hydroxide (Ca(OH)₂) at around pH 6. The TF could handle different urine collection batches and maintain relatively stable nitrification performance, with NO₃⁻-N production efficiency and rate of 88±3% and 136±4 mg N L⁻¹ d⁻¹, respectively. The optimal HLR to realize this nitrification performance was 2 m³ m⁻² h⁻¹, with energy consumption of 1.8 kWh electricity kg⁻¹ NO₃⁻-N production. Ca(OH)₂, as a cheap base, its triple advantages on urine alkalinization, full nitrification, and macronutrient supplementation were successfully demonstrated in our proposed concept. In Chapter 4, towards more sustainable wastewater treatment, the feasibility of one-stage partial nitritation/anammox (PN/A) was investigated in three parallel packed-bed trickling filters (TFs), with three types of carrier materials of different specific surface areas. Synthetic wastewater containing 100-250 mg NH₄⁺-N L⁻¹ was tested to mimic medium-strength household waste streams after carbon removal. Interestingly, the cheap carrier based on expanded clay achieved similar rates as commercially used plastic carrier materials. The top passive ventilation combined with an optimum hydraulic loading rate of 1.8 m³ m⁻² h⁻¹ could reach approximately 60% total nitrogen (TN) removal at a rate of 300 mg N L⁻¹ d⁻¹. A relatively low NO₃⁻-N production (13%) via PN/A was achieved in TFs. Most of the TN removal took place in the top compartment, where anammox activity was the highest. Energy consumption estimation (0.78 kWh electricity g⁻¹ N removed) suggested that the proposed process could be a suitable low-cost alternative for nitrogen removal. In Chapter 5, coupling sulfur-driven denitratation (SDN) with anammox was proposed to treat the wastewater containing both NO₃⁻-N and NH₄⁺-N, like the secondary effluents of mainstream PN/A processes. To explore the feasibility of sufficient and stable NO₂⁻-N accumulation via SDN in the long term, the effects of pH setpoints, residual NO₃⁻-N level, and biomass-specific NO₃⁻-N loading rate (BSNLR) were investigated. Alternating the pH setpoints between 7.0 and 8.5 could temporarily stimulate the NO₂⁻-N accumulation. Both the residual NO₃⁻-N and BSNLR showed highly positive correlations with the NO₂⁻-N accumulation efficiency. Under the control of pH 8.5, 1.0±0.8 mg NO₃⁻-N L⁻¹ and 150±42 mg NO₃⁻-N g⁻¹ VSS d⁻¹, SDN could produce 6.4±1.0 mg NO₂⁻-N L⁻¹ in the short term. Thiobacillus members may play a crucial role in managing the NO₂⁻-N accumulation, but the reduction of abundance and possible adaptation significantly impaired the efficacy of control strategies in the long run. Overall, novel technologies have been proposed to sustainably convert Nr in waste streams and biomass. The decision for Nr recovery versus removal and synthesis should be based on specific cases with the best environmental, economic, and human-health sustainability. In the future, the Nr management concepts should be further improved to make the nitrogen cycle more sustainable with higher resource use efficiency and less Nr emissions to the environment. Although the thesis is mainly focused on limited types of Nr waste streams, it pointed out the direction of sustainable Nr management and could facilitate the Nr back to the safe boundary in the long run.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182099 Serial 7563
Permanent link to this record
 

 
Author (down) Xiao, Y.
Title Theoretical study of the optoelectronic properties of new type 2DEG materials : multilayer graphene and monolayer MoS2 Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 144 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144948 Serial 8661
Permanent link to this record
 

 
Author (down) Xhoffer, C.; Wouters, L.; Artaxo, P.; van Put, A.; Van Grieken, R.
Title Characterization of individual environmental particles by beam techniques Type H3 Book chapter
Year 1992 Publication Abbreviated Journal
Volume Issue Pages 107-143 T2 - Environmental particles, volume 1 / B
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:2853 Serial 7623
Permanent link to this record
 

 
Author (down) Xhoffer, C.; Van Grieken, R.
Title Environmental aerosol characterization by single particle analysis techniques Type H3 Book chapter
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 207-245 T2 - Environmental particles; 2 / Buffle,
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:6267 Serial 7926
Permanent link to this record
 

 
Author (down) Xhoffer, C.; Jacob, W.; Van Grieken, R.; Broekaert, J.A.C.; Buseck, P.
Title Electron energy-loss spectroscopy and its application to individual particle analysis Type P3 Proceeding
Year 1992 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:2862 Serial 7868
Permanent link to this record