|   | 
Details
   web
Records
Author (up) van der Snickt, G.; Dubois, H.; Sanyova, J.; Legrand, S.; Coudray, A.; Glaude, C.; Postec, M.; van Espen, P.; Janssens, K.
Title Large-area elemental imaging reveals Van Eyck's original paint layers on the Ghent altarpiece (1432), rescoping its conservation treatment Type A1 Journal article
Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 56 Issue 17 Pages 4797-4801
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A combination of large-scale and micro-scale elemental imaging, yielding elemental distribution maps obtained by, respectively non-invasive macroscopic X-ray fluorescence (MA-XRF) and by secondary electron microscopy/energy dispersive X-ray analysis (SEM-EDX) and synchrotron radiation-based micro-XRF (SR m-XRF) imaging was employed to reorient and optimize the conservation strategy of van Eyck's renowned Ghent Altarpiece. By exploiting the penetrative properties of X-rays together with the elemental specificity offered by XRF, it was possible to visualize the original paint layers by van Eyck hidden below the overpainted surface and to simultaneously assess their condition. The distribution of the high-energy Pb-L and Hg-L emission lines revealed the exact location of hidden paint losses, while Fe-K maps demonstrated how and where these lacunae were filled-up using an iron-containing material. The chemical maps nourished the scholarly debate on the overpaint removal with objective, chemical arguments, leading to the decision to remove all skillfully applied overpaints, hitherto interpreted as work by van Eyck. MA-XRF was also employed for monitoring the removal of the overpaint during the treatment phase. To gather complementary information on the in-depth layer build-up, SEM-EDX and SR mu-XRF imaging was used on paint cross sections to record microscale elemental maps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398576000019 Publication Date 2017-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 11 Open Access
Notes ; This research was supported by the Baillet Latour fund, the Belgian Science Policy Office (Projects MO/39/011) and the Gieskes-Strijbis fund. The authors are also indebted to the BOF-GOA SOLAR Paint project of the University of Antwerp Research Council. The church wardens of the cathedral of St. Bavo and their chairman L. Collin are acknowledged for this agreeable collaboration. We also wish to thank conservators L. Depuydt, B. De Volder, F. Rosier, N. Laquiere and G. Steyaert as well as the members of the international committee. We are indebted to Prof. Em. A. Van Grevenstein-Kruse. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:142376 Serial 5688
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Janssens, K.; Dik, J.; de Nolf, W.; Vanmeert, F.; Jaroszewicz, J.; Cotte, M.; Falkenberg, G.; Van der Loeff, L.
Title Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh Type A1 Journal article
Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 84 Issue 23 Pages 10221-10228
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO4 center dot H2O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 mu m sized globular agglomerations. Here, we study cadmium yellow in the painting “Flowers in a blue vase” by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (mu-XRD), microscopic X-ray absorption near-edge spectroscopy (mu-XANES), microscopic X-ray fluorescence (mu-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (mu-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO4 compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd2+ ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO42- anions, for their part, found a suitable reaction partner in Pb2+ ions stemming from a dissolved lead-based siccative that was added to the varnish to promote its drying. The resulting opaque anglesite compound in the varnish, in combination with the underlying CdC2O4 layer at the paint/varnish interface, account for the orange-gray crust that is disfiguring the painting on a macroscopic level. In this way, the results presented in this paper demonstrate how, through a judicious combined use of several microanalytical methods with speciation capabilities, many new insights can be obtained from two minute, but highly complex and heterogeneous paint samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000311815300013 Publication Date 2012-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 59 Open Access
Notes ; This research was supported by BELSPO via the Interuniversity Attraction Poles Programme (IUAP VI/16) and the S2-ART project (SD/RI/04A) and funded by Grants from the ESRF (EC-442) and PETRA-III (I-20120312 EC). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Kroller-Muller Museum and painting conservators Margje Leeuwestein and Esther Van Duijn are acknowledged for this pleasant cooperation and the authorization for the publication of the images in this article. ; Approved Most recent IF: 6.32; 2012 IF: 5.695
Call Number UA @ admin @ c:irua:105971 Serial 5526
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Janssens, K.; Schalm, O.; Aibéo, C.; Kloust, H.; Alfeld, M.
Title James Ensor's pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry Type A1 Journal article
Year 2010 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom
Volume 39 Issue 2 Pages 103-111
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this paper, portable X-ray fluorescence spectrometry (PXRF) was employed as a screening tool for determining and comparing the pigment use in a large series of paintings by the Belgian artist James Ensor (1860-1949). Benefits and drawbacks of PXRF as a method, and the instrument employed, are discussed from a practical, conservation and instrumental perspective. Regardless of several restrictions due to the set-up and/or the analytical method, it appeared feasible to document the evolution with time in Ensor's use of inorganic pigments and to correlate this technical evolution with stylistic developments, Nevertheless, it became clear that a full identification of all materials present can only be done by means of the analysis of (cross-sectioned) samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000275959400006 Publication Date 2009-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.298 Times cited 25 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The staff of the different museums and private institutions is acknowledged for rendering their assistance to this research, i.e. by making all paintings available for analysis and authorising the publication of the images in this article. Therefore, a word of gratitude to Paul Huvenne, Yolande Deckers, Herwig Todts, Stef Antonissen, Gwen Borms and Lizet Klaassen of the Koninklijk Museum voor Schone Kunsten Antwerpen (KMSKA), Luuk Van der Loeff of the Kroller-Muller Museum in Otterlo and Mireille Engel, Barbara De Jong of the Musea aan Zee (MuZee), Patricia Jaspers of the Dexia bank, Hildegard Van de Velde of the KBC bank and Frederik Leen of the Koninklijke Musea voor Schone Kunsten van Belgie (KMSKB). Special thanks to Xavier Tricot and the other members of the Ensor committee for their valuable feedback. ; Approved Most recent IF: 1.298; 2010 IF: 1.661
Call Number UA @ admin @ c:irua:82324 Serial 5680
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K.
Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 124 Issue Pages 615-622
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367755600074 Publication Date 2015-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 22 Open Access
Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:131100 Serial 5514
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K.
Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 238-245
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428103000027 Publication Date 2018-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151564 Serial 5657
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J.
Title Exploring a hidden painting below the surface of Rene Magritte's Le Portrait Type A1 Journal article
Year 2016 Publication Applied spectroscopy Abbreviated Journal Appl Spectrosc
Volume 70 Issue 1 Pages 57-67
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Two state-of-the-art methods for non-invasive visualization of subsurface (or overpainted) pictorial layers present in painted works of art are employed to study Le portrait, painted by Belgian artist Rene Magritte in 1935. X-ray radiography, a commonly used method for the nondestructive inspection of paintings, had revealed the presence of an underlying figurative composition, part of an earlier Magritte painting entitled La pose enchantee (1927) which originally depicted two full length nude female figures with exaggerated facial features. On the one hand, macroscopic X-ray fluorescence analysis (MA-XRF), a method capable of providing information on the distribution of the key chemical elements present in many artists' pigments, was employed. The ability of the X-rays to penetrate the upper layer of paint enabled the imaging of the facial features of the female figure and provided information on Magritte's palette for both surface and hidden composition. On the other hand, visible and near infrared hyperspectral imaging spectroscopies in transmission mode were also used, especially in the area of the table cloth in order to look through the upper representation and reveal the pictorial layer(s) below. MA-XRF provided elemental information on the pigment distributions in both the final painting and the prior whereas the transmission mode provided information related to preparatory sketches as well as revealing differences between the paints used in both compositions. These results illustrate very well the manner in which the two imaging methods complement each other, both in the sense of providing different types of information on the nature and presence of paint components/pigments and in the sense of being optimally suited to easily penetrate through different types of overpaint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368604500007 Publication Date 2016-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.529 Times cited 13 Open Access
Notes ; GvdS and KJ acknowledge the support of the Fund Inbev-Baillet Latour. JKD acknowledges support from the Andrew Mellon Foundation and the National Science Foundation. BvD and JD acknowledge support from The Netherlands Organisation for Scientific Research (NWO). ; Approved Most recent IF: 1.529
Call Number UA @ admin @ c:irua:131544 Serial 5620
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Miliani, C.; Janssens, K.; Brunetti, B.G.; Romani, A.; Rosi, F.; Walter, P.; Castaing, J.; de Nolf, W.; Klaassen, L.; Labarque, I.; Wittermann, R.
Title Material analyses of “Christ with singing and music-making Angels”, a late 15th-C panel painting attributed to Hans Memling and assistants : part 1 : non-invasive in situ investigations Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 26 Issue 11 Pages 2216-2229
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In cultural heritage science, compositional data is traditionally obtained from works of art through the analysis of samples by means of various bench-top instruments (scanning electron microscope, Raman spectrometer, etc.). Alternatively, the object can be transported to a laboratory where it may be examined, usually by spectroscopic methods working in reflection mode. However, this paper describes how a complementary set of mobile and portable instruments was deployed in situ to gain a comprehensive view on the materials and related ageing compounds of an (almost) unmovable 15th-C polyptych, prior to and in preparation of the extraction of a limited number of samples. In line with the methodological approach discussed, PXRF was first employed as an efficient screening tool. The ensuing elemental data was supplemented by more specific information on both organic as inorganic materials supplied by reflection near- and mid-FTIR spectroscopy and fluorimetry. In completion, a limited number of diffraction patterns were collected with a mobile XRD instrument in order to identify the constituent crystalline phases in pigments, grounding materials and degradation products. In this way, it could be demonstrated how a rich array of colours was obtained by means of a limited palette of pigments: lead white, lead tin yellow, azurite, natural ultramarine, bone black, vermillion, madder lake, and a green copper-organo complex were detected and situated on the panels. Remarkably, next to chalk also gypsum was found in the ground layer(s) of this Western European easel painting. The relatively large surface of the background was covered with gold leaf; the analyses seem to point towards the labour-intensive water gilding technique. The versatility of this combination of analytical techniques was further illustrated by the accurate characterisation of degradation products affecting the readability and conservation of the painting: the overall presence of a calcium oxalate-based film of variable thickness was established. Nevertheless, further analysis of cross-sectioned samples was considered desirable in order to study the stratigraphy, to gain direct access to altered and sub-imposed layers and to allow highly detailed analysis of micrometric degradation products by state-of-the art techniques (i.e. synchrotron radiation).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296021800010 Publication Date 2011-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 32 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0103.04, G.0689.06 and G.0704.08. The staff of the Royal Museum of Fine Arts Antwerp is acknowledged for this pleasant cooperation and the authorisation for the publication of the images in this article. Therefore, a word of gratitude to Paul Huvenne, Yolande Deckers, Stef Antonissen and Gwen Borms. In addition, the authors would like to thank the MOLAB's team operators Chiari Anselmi and Federica Presciutti. MOLAB analyses have been carried out through the support of the EU within the 6th Framework Programme (Contract Eu-ARTECH, RII3-CT-2004-506171). ; Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ admin @ c:irua:93680 Serial 5705
Permanent link to this record
 

 
Author (up) van der Snickt, G.; Schalm, O.; Caen, J.; Janssens, K.; Schreiner, M.
Title Blue enamel on sixteenth- and seventeenth-century window glass : deterioration, microstructure, composition and preparation Type A1 Journal article
Year 2006 Publication Studies in conservation Abbreviated Journal Stud Conserv
Volume 51 Issue Pages 212-222
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000241941100006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.578 Times cited 8 Open Access
Notes Approved Most recent IF: 0.578; 2006 IF: 0.609
Call Number UA @ admin @ c:irua:60712 Serial 5492
Permanent link to this record
 

 
Author (up) Van der Stighelen, K.; Janssens, K.; van der Snickt, G.; Alfeld, M.; Van Beneden, B.; Demarsin, B.; Proesmans, M.; Marchal, G.; Dik, J.
Title Young Anthony van Dyck revisited : a multidisciplinary approach to a portrait once attributed to Peter Paul Rubens Type A3 Journal article
Year 2014 Publication Art matters : international journal for technical art history Abbreviated Journal
Volume 6 Issue Pages 21-35
Keywords A3 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Part of the collection of the Rubens House in Antwerp is a portrait of young Anthony van Dyck, alternatively attributed to Peter Paul Rubens and his pupil Anthony van Dyck. In order to reconstruct the genesis of the portrait in a manner that improves upon past investigations, a number of high-end technological methods, such as X-radiography, X-ray computer tomography, mammographic tomosynthesis and macroscopic X-ray fluorescence, have been employed to render the overpainted layers visible again. The results of the interdisciplinary examinations of the portrait of the youthful Van Dyck are impressive. The combined results allow the later additions to be peeled away until the original composition can be reached. Several pentimenti are easily discernible and refer to a rather immature hand that makes the authorship of Peter Paul Rubens very unlikely. What emerges is a portrait of an ambitious young man with a luxuriant head of hair and a slightly turned-up collar. The hat and cape were added later. The facial features are more recognisable and the execution of the bold curls points irrefutably in the direction of Anthony van Dyck as the author of his own portrait.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:122562 Serial 5922
Permanent link to this record
 

 
Author (up) van Loon, A.; Noble, P.; de Man, D.; Alfeld, M.; Callewaert, T.; van der Snickt, G.; Janssens, K.; Dik, J.
Title The role of smalt in complex pigment mixtures in Rembrandt'sHomer1663: combining MA-XRF imaging, microanalysis, paint reconstructions and OCT Type A1 Journal article
Year 2020 Publication Heritage science Abbreviated Journal
Volume 8 Issue 1 Pages 90-19
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract As part of the NWO Science4ArtsREVISRembrandtproject (2012-2018), novel chemical imaging techniques were developed and applied to the study of Rembrandt's late experimental painting technique (1651-1669). One of the unique features in his late paintings is his abundant use of smalt: a blue cobalt glass pigment that he often combined with organic lake pigments, earth pigments and blacks. Since most of these smalt-containing paints have discolored over time, we wanted to find out more about how these paintings may have originally looked, and what the role of smalt was in his paint. This paper reports on the use of smalt in complex pigment mixtures in Rembrandt'sHomer(1663), Mauritshuis, The Hague. Macroscopic X-ray fluorescence imaging (MA-XRF) assisted by computational analysis, in combination with SEM-EDX analysis of paint cross-sections, provides new information about the distribution and composition of the smalt paints in the painting. Paint reconstructions were carried out to investigate the effect of different percentages of smalt on the overall color, the drying properties, translucency and texture of the paint. Results show that the influence of (the originally blue) smalt on the intended color of the paint of theHomeris minimal. However, in mixtures with high percentages of smalt, or when combined with more transparent pigments, it was concluded that the smalt did produce a cooler and darker paint. It was also found that the admixture of opaque pigments reduced the translucent character of the smalt. The drying tests show that the paints with (cobalt-containing) smalt dried five times faster compared to those with glass (without cobalt). Most significantly, the texture of the paint was strongly influenced by adding smalt, creating a more irregular surface topography with clearly pronounced brushstrokes. Optical coherence tomography (OCT) was used as an additional tool to reveal differences in translucency and texture between the different paint reconstructions. In conclusion, this study confirmed earlier assumptions that Rembrandt used substantial amounts of smalt in his late paintings, not for its blue color, but to give volume and texture to his paints, to deepen their colors and to make them dry faster.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565893700001 Publication Date 2020-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access
Notes Approved Most recent IF: 2.5; 2020 IF: NA
Call Number UA @ admin @ c:irua:171995 Serial 8659
Permanent link to this record
 

 
Author (up) van Loon, A.; Noble, P.; Krekeler, A.; van der Snickt, G.; Janssens, K.; Abe, Y.; Nakai, I.; Dik, J.
Title Artificial orpiment, a new pigment in Rembrandt's palette Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal
Volume 5 Issue Pages 26
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This paper reports on how the application of macro X-ray fluorescence (MA-XRF) imaging, in combination with the re-examination of existing paint cross-sections, has led to the discovery of a new pigment in Rembrandt's palette: artificial orpiment. In the NWO Science4Arts 'ReVisRembrandt' project, novel chemical imaging techniques are being developed and applied to the study of Rembrandt's late paintings in order to help resolve outstanding questions and to gain a better understanding of his late enigmatic painting technique. One of the selected case studies is the Portrait of a Couple as Isaac and Rebecca, known as 'The Jewish Bride', dated c. 1665 and on view in the Rijksmuseum. During the re-installation of the Rijksmuseum in 2013, the picture was scanned using the Bruker M6 Jetstream MAXRF scanner. The resulting elemental distribution maps made it possible to distinguish many features in the painting, such as bone black remains of the original hat (P, Ca maps), and the now discolored smalt-rich background (Co, Ni, As, K maps). The arsenic (As) map also revealed areas of high-intensity in Isaac's sleeve and Rebecca's dress where it could be established that it was not related with the pigment smalt that also contains arsenic. This pointed to the presence of a yellow or orange arsenic-containing pigment, such as realgar or orpiment that is not associated with the artist's palette. Subsequent examination of existing paint cross-sections from these locations taken by Karin Groen in the 1990s identified isolated, almost perfectly round particles of arsenic sulfide. The round shape corresponds with published findings on a purified form of artificial orpiment glass obtained by dry processing, a sublimation reaction. In bright field, the particles characteristically exhibit a dark cross in the middle caused by internal light reflections. The results of additional non-invasive techniques (portable XRD and portable Raman) are discussed, as well as the implications of this finding and how it fits with Rembrandt's late experimental painting technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404916400001 Publication Date 2017-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes ; This research is part of the Science4Arts Program, funded by the Netherlands Organization for Scientific Research (NWO) (Grant No. SFA-11-12). GVdS is supported by the Baillet Latour Fund. The authors would like to thank Lisette Vos, Rijksmuseum Amsterdam, for assisting with the MA-XRF scanning; Arisa Izumi and Airi Hirayama, students of the Tokyo University of Science, and Frederik Vanmeert, University of Antwerp, for assisting with the pXRD and pRaman measurements. We are also grateful to Rob Erdmann, Rijksmuseum Amsterdam, who made the curtain viewer to facilitate comparison of the visible image with the elemental distribution maps of the painting. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:144864 Serial 5479
Permanent link to this record
 

 
Author (up) Vanmeert, F.; De Meyer, S.; Gestels, A.; Clerici, E.A.; Deleu, N.; Legrand, S.; Van Espen, P.; Van der Snickt, G.; Alfeld, M.; Dik, J.; Monico, L.; De Nolf, W.; Cotte, M.; Gonzalez, V.; Saverwyns, S.; Depuydt-Elbaum, L.; Janssens, K.
Title Non-invasive and non-destructive examination of artists’ pigments, paints and paintings by means of X-ray imaging methods Type H1 Book chapter
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 317-357
Keywords H1 Book chapter; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Recent studies in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples and/or entire paintings from fifteenth to twentieth century artists are discussed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use with X-ray diffraction (XRD). Microscopic XRF (μ-XRF) is a variant of the XRF method able to visualize the elemental distribution of key elements, mostly metals, on the scale from 1 μm to 100 μm present inside multi-layered micro samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, in many cases the use of methods limited to elemental analysis or imaging does not suffice to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS (microscopic X-ray absorption spectroscopy) and μ-XRD have proven themselves to be very suitable for such studies. Since microscopic investigation of a relatively limited number of minute paint samples may not yield representative information about the complete artefact they were taken from, several methods for macroscopic, non-invasive imaging have recently been developed. Combined macroscopic XRF/XRD scanning is able to provide a fairly complete overview of the inorganic pigments employed to create a work of art, to answer questions about ongoing degradation phenomena and about its authenticity. As such these newly developed non-invasive and highly specific imaging methods are of interest for many cultural heritage stakeholders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2022-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-86864-2 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190777 Serial 7183
Permanent link to this record
 

 
Author (up) Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K.
Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue 25 Pages 7418-7422
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434949200023 Publication Date 2018-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access
Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:153185 Serial 5517
Permanent link to this record
 

 
Author (up) Vanmeert, F.; van der Snickt, G.; Janssens, K.
Title Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting Type A1 Journal article
Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 54 Issue 12 Pages 3607-3610
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β-PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3⋅Pb(OH)2; PbCO3). X-ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3⋅ Pb(OH)2⋅PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000351178300008 Publication Date 2015-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 24 Open Access
Notes ; The authors acknowledge L. Van der Loeff and M. Leeuwestein (Kroller-Muller Museum) for providing the paint sample. We thank Dr. J. Jaroszewicz (WUT) for performing the CT measurements. This research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We thank Dr. G. Falkenberg and the members of his team for their assistance in using beam line P06. We acknowledge financial support from the University of Antwerp GOA projects “XANES meets EELS” and “SOLARPaint”, as well as from BELSPO (Brussels) Project S2-ART and FWO (Brussels) project “ESRF-Dubble”. ; Approved Most recent IF: 11.994; 2015 IF: 11.261
Call Number UA @ admin @ c:irua:124620 Serial 5774
Permanent link to this record
 

 
Author (up) Vanmeert, F.; Van der Snickt, G.; Legrand, S.; Janssens, K.
Title Velázquez? A portrait of Pope Innocent X : an X-ray imaging investigation (II) Type H3 Book chapter
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 132-141 T2 - Velázquez : Anregungen, Vorschläge, L
Keywords H3 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Encompassing a broad spectrum of methodological approaches and aims, the scholars contributing to this volume offer renewed perspectives on the multifaceted oeuvre of Diego Velázquez. The seventeenth-century artist’s exceptional religious works as well as his numerous portraits are examined within the social and historical context of Velázquez’s milieu which included both the Spanish court as well as circles comprising important intellectual figures of his time. Following a close investigation of his works, which also includes the results of recent technological examinations on his paintings, the contributors to this volume offer new, exciting findings and discussions on the inspirations, sources and possible intentions of Velázquez.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-99020-155-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190783 Serial 8736
Permanent link to this record