|   | 
Details
   web
Records
Author (down) Retuerto, M.; Li, M.R.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Chi, S.; Hodges, J.P.; Dachraoui, W.; Hadermann, J.; Tran, T.T.; Halasyamani, P.S.; Grams, C.P.; Hemberger, J.; Greenblatt, M.;
Title Polar and magnetic layered A-site and rock salt B-site-ordered NaLnFeWO6 (Ln = La, Nd) perovskites Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 21 Pages 12482-12491
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray absorption spectroscopy, dielectric measurements, and second harmonic generation. At room temperature, the crystal structures of both compounds can be defined in the noncentrosymmetric monoclinic P2(1) space group resulting from the combination of ordering both in the A and B sublattices, the distortion of the cell due to tilting of the octahedra, and the displacement of certain cations. The magnetic studies show that both compounds are ordered antiferromagnetically below T-N approximate to 25 K for NaLaFeWO6 and at similar to 21 K for NaNdFeWO6. The magnetic structure of NaNdFeWO6 has been solved with a propagation vector k = (1/2 0 1/2) as an antiferromagnetic arrangement of Fe and Nd moments. Although the samples are potential multiferroics, the dielectric measurements do not show a ferroelectric response.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000326669200035 Publication Date 2013-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 17 Open Access
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:112714 Serial 2656
Permanent link to this record
 

 
Author (down) Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Herber, R.H.; Nowik, I.; Hodges, J.P.; Dachraoui, W.; Hadermann, J.; Greenblatt, M.;
Title High magnetic ordering temperature in the perovskites Sr4-xLaxFe3ReO12 (x=0.0, 1.0, 2.0) Type A1 Journal article
Year 2012 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 194 Issue Pages 48-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of perovskites Sr4−xLaxFe3ReO12 (x=0.0, 1.0, 2.0) has been prepared by wet chemistry methods. The structure analyses by powder X-ray and neutron diffraction and electron microscopy show that these compounds adopt simple perovskite structures without cation ordering over the B sites: tetragonal (I4/mcm) for x=0.0 and 1.0 and orthorhombic (Pbmn) for x=2.0. The oxidation states of the cations in the compound with x=0.0 appear to be Fe3+/4+ and Re7+ and decrease for both with La substitution as evidenced by X-ray absorption spectroscopy. All the compounds are antiferromagnetically ordered above room temperature, as demonstrated by Mössbauer spectroscopy and the magnetic structures, which were determined by powder neutron diffraction. The substitution of Sr by La strongly affects the magnetic properties with an increase of TN up to ∼750 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000308896400009 Publication Date 2012-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 9 Open Access
Notes Approved Most recent IF: 2.299; 2012 IF: 2.040
Call Number UA @ lucian @ c:irua:101220 Serial 1435
Permanent link to this record
 

 
Author (down) Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Hadermann, J.; Hodges, J.P.; Herber, R.H.; Nowik, I.; Greenblatt, M.;
Title Magnetic and structural studies of the multifunctional material SrFe0.75Mo0.25O3-\text{\textgreek{d}} Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 51 Issue 22 Pages 12273-12280
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract SrFe0.75Mo0.25O3-delta has been recently discovered as an extremely efficient electrode for intermediate temperature solid oxide fuel cells (IT-SOFCs). We have performed structural and magnetic studies to fully characterize this multifunctional material. We have observed by powder neutron diffraction (PND) and transmission electron microscopy (TEM) that its crystal symmetry is better explained with a tetragonal symmetry (I4/mcm space group) than with the previously reported orthorhombic symmetry (Pnma space group). The temperature dependent magnetic properties indicate an exceptionally high magnetic ordering temperature (T-N similar to 750 K), well above room temperature. The ordered magnetic structure at low temperature was determined by PND to be an antiferromagnetic coupling of the Fe cations. Mossbauer spectroscopy corroborated the PND results. A detailed study, with X-ray absorption spectroscopy (XAS), in agreement with the Mossbauer results, confirmed the formal oxidation states of the cations to be mixed valence Fe3+/4+ and Mo6+.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000311173700024 Publication Date 2012-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 12 Open Access
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:105142 Serial 1862
Permanent link to this record
 

 
Author (down) Retuerto, M.; Emge, T.; Hadermann, J.; Stephens, P.W.; Li, M.R.; Yin, Z.P.; Croft, M.; Ignatov, A.; Zhang, S.J.; Yuan, Z.; Jin, C.; Simonson, J.W.; Aronson, M.C.; Pan, A.; Basov, D.N.; Kotliar, G.; Greenblatt, M.;
Title Synthesis and properties of charge-ordered thallium halide perovskites, CsTl0.5+Tl0.53+X3 (X = F or Cl) : theoretical precursors for superconductivity? Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 20 Pages 4071-4079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, CsTlCl3 and CsTlF3 perovskites were theoretically predicted to be potential superconductors if they were optimally doped. The syntheses of these two compounds together with a complete characterization of the samples are reported. CsTlCl3 was obtained as orange crystals in two different polymorphs: a tetragonal phase (I4/m) and a cubic phase (Fm (3) over barm). CsTlF3 was formed as a light brown powder, and also as a double cubic perovskite (Fm (3) over barm). In all three CsTlX3 phases, Tl+ and Tl3+ were located in two different crystallographic positions that accommodate their different bond lengths. In CsTlCl3, some Tl vacancies were found in the Tl+ position. The charge ordering between Tl+ and Tl3+ was confirmed by X-ray absorption and Raman spectroscopy. The Raman spectroscopy of CsTlCl3 at high pressure (58 GPa) did not indicate any phase transition to a possible single Tl2+ state. However, the highly insulating material became less resistive with an increasing high pressure, while it underwent a change in its optical properties, from transparent to deeply opaque red, indicative of a decrease in the magnitude of the band gap. The theoretical design and experimental validation of the existence of CsTlF3 and CsTlCl3 cubic perovskites are the necessary first steps in confirming the theoretical prediction of superconductivity in these materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000326209200017 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:112248 Serial 3434
Permanent link to this record
 

 
Author (down) Li, M.R.; Walker, D.; Retuerto, M.; Sarkar, T.; Hadermann, J.; Stephens, P.W.; Croft, M.; Ignatov, A.; Grams, C.P.; Hemberger, J.; Nowik, I.; Halasyamani, P.S.; Tran, T.T.; Mukherjee, S.; Dasgupta, T.S.; Greenblatt, M.;
Title Polar and magnetic Mn2FeMO6 (M=Nb, Ta) with LiNbO3-type structure : high-pressure synthesis Type A1 Journal article
Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue 32 Pages 8406-8410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000322631600044 Publication Date 2013-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 53 Open Access
Notes Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number UA @ lucian @ c:irua:110749 Serial 2657
Permanent link to this record
 

 
Author (down) Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.;
Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 54 Issue 54 Pages 12069-12073
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000363396000031 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access
Notes Approved Most recent IF: 11.994; 2015 IF: 11.261
Call Number UA @ lucian @ c:irua:129457 Serial 4186
Permanent link to this record
 

 
Author (down) Li, M.R.; Retuerto, M.; Bok Go, Y.; Emge, T.J.; Croft, M.; Ignatov, A.; Ramanujachary, K.V.; Dachraoui, W.; Hadermann, J.; Tang, M.B.; Zhao, J.T.; Greenblatt, M.;
Title Synthesis, crystal structure, and properties of KSbO3-type Bi3Mn1.9Te1.1O11 Type A1 Journal article
Year 2013 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 197 Issue Pages 543-549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Single crystals of Bi3Mn1.9Te1.1O11 were prepared from NaCl+KCl flux. This compound adopts KSbO3-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn0.63Te0.37)2O10 dimers and two identical (Bi1)4(Bi2)2 interpenetrating lattices. The intra-dimer Mn/TeMn/Te distances in Bi3Mn1.9Te1.1O11 are short and are consistent with weak metalmetal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi3(MnIII1.1MnIV0.8)TeVI1.1O11 with 57.7% Mn3+ and 42.3% Mn4+. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi3Mn3O11 (TC=150 K).
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000312281000076 Publication Date 2012-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 13 Open Access
Notes Approved Most recent IF: 2.299; 2013 IF: 2.200
Call Number UA @ lucian @ c:irua:101779 Serial 3452
Permanent link to this record
 

 
Author (down) Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.;
Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 27 Issue 27 Pages 2177-2181
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000352548900004 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 32 Open Access
Notes Approved Most recent IF: 19.791; 2015 IF: 17.493
Call Number c:irua:126002 Serial 3545
Permanent link to this record
 

 
Author (down) Li, M.R.; Adem, U.; McMitchell, S.R.C.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; Schiffmann, F.; Cora, F.; Slater, B.; Burnett, T.L.; Cain, M.G.; Abakumov, A.M.; Van Tendeloo, G.; Thomas, M.F.; Rosseinsky, M.J.; Claridge, J.B.;
Title A polar corundum oxide displaying weak ferromagnetism at room temperature Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 8 Pages 3737-3747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K-this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301161600027 Publication Date 2012-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 48 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97200 Serial 2658
Permanent link to this record
 

 
Author (down) Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.;
Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 98-103
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700022 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 20 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113765 Serial 3603
Permanent link to this record