|   | 
Details
   web
Records
Author (down) Ding, L.; Sapanathan, T.; Schryvers, D.; Simar, A.; Idrissi, H.
Title On the formation of antiphase boundaries in Fe₄Al₁₃ intermetallics during a high temperature treatment Type A1 Journal article
Year 2022 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 215 Issue Pages 114726-6
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this paper, we report atomic scale observations and formation mechanisms of a high-density of antiphase boundaries (APBs) within an ultra-fine-grained Fe4Al13 intermetallic layer at an Al/steel interface after a heat treatment at 596 degrees C. The results reveal that the APBs are formed by nucleation and the glide of partial dislocations with Burgers vector of b/3[010] (b = 12.47 angstrom). The intensive activation of APBs locally transforms the Fe4Al13 structure from the quasicrystal approximant structure to a quasicrystal. Very few stacking faults and nanotwins are observed indicating that the formation of planar defects is mainly driven by this transformation. This new insight on the formation of high density of APBs could possibly lead to an improvement in toughness by increasing the strength/ductility balance of this intermetallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000800016600003 Publication Date 2022-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:188644 Serial 7088
Permanent link to this record
 

 
Author (down) Ding, L.; Raskin, J.-P.; Lumbeeck, G.; Schryvers, D.; Idrissi, H.
Title TEM investigation of the role of the polycrystalline-silicon film/substrate interface in high quality radio frequency silicon substrates Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 161 Issue Pages 110174-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The microstructural characteristics of two polycrystalline silicon (poly-Si) films with different electrical properties produced by low-pressure chemical vapour deposition on top of high resistivity silicon substrates were investigated by advanced transmission electron microscopy (TEM), including high resolution aberration corrected TEM and automated crystallographic orientation mapping in TEM. The results reveal that the nature of the poly-Si film/Si substrate interface is the main factor controlling the electrical resistivity of the poly-Si films. The high resistivity and high electrical linearity of poly-Si films are strongly promoted by the Sigma 3 twin type character of the poly-Si/Si substrate interface, leading to the generation of a huge amount of extended defects including stacking faults, Sigma 3 twin boundaries as well as Sigma 9 grain boundaries at this interface. Furthermore, a high density of interfacial dislocations has been observed at numerous common and more exotic grain boundaries deviating from their standard crystallographic planes. In contrast, poly-Si film/Si substrate interfaces with random character do not favour the formation of such complex patterns of defects, leading to poor electrical resistivity of the poly-Si film. This finding opens windows for the development of high resistivity silicon substrates for Radio Frequency (RF) integrated circuits (ICs) applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000521515800027 Publication Date 2020-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes ; H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:168664 Serial 6621
Permanent link to this record
 

 
Author (down) Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q.
Title Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 54 Issue 10 Pages 7943-7952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460069500043 Publication Date 2019-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 1 Open Access Not_Open_Access
Notes Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 2.599
Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158
Permanent link to this record
 

 
Author (down) Delvaux, A.; Lumbeeck, G.; Idrissi, H.; Proost, J.
Title Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis Type A1 Journal article
Year 2020 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta
Volume 340 Issue Pages 135970-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Efforts to improve the cell efficiency of hydrogen production by water electrolysis continue to address the electrochemical kinetics of the oxygen and hydrogen evolution reactions in detail. The objective of this work is to study a parasitic reaction occurring during the hydrogen evolution reaction (HER), namely the absorption of hydrogen atoms into the bulk electrode. Effects of the electrode microstructure and internal stress on this reaction have been addressed as well in this paper. Ni thin film samples were deposited on a Si substrate by sputter deposition with different deposition pressures, resulting in different microstructures and varying levels of internal stress. These microstructures were first analyzed in detail by Transmission Electron Microscopy (TEM). Cathodic chrono-amperometric measurements and cyclic voltammetries have then been performed in a homemade electrochemical cell. These tests were coupled to a multi-beam optical sensor (MOS) in order to obtain in-situ curvature measurements during hydrogen absorption. Indeed, since hydrogen absorption in the thin film geometry results in a constrained volume expansion, internal stress generation during HER can be monitored by means of curvature measurements. Our results show that different levels of internal stress, grain size and twin boundary density can be obtained by varying the deposition parameters. From an electrochemical point of view, this paper highlights the fact that the electrochemical surface mechanisms during HER are the same for all the electrodes, regardless of their microstructure. However it is shown that the absolute amount of hydrogen being absorbed into the Ni thin films increases when the grain size is reduced, due to a higher grain boundaries density which are favourite absorption sites for hydrogen. At the same time, it was concluded that H-2 evolution is favoured at electrodes having a more compressive (i.e. a less tensile) internal stress. Finally, the subtle effect of microstructure on the hydrogen absorption rate will be discussed as well. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000521531800011 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited 2 Open Access Not_Open_Access
Notes ; The authors gratefully acknowledge financial support of the Public Service of Wallonia e Department of Energy and Sustainable Building, through the project WallonHY. The ACOM-TEM work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15 N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. We also like to cordially thank Ronny Santoro for carrying out the ICP-OES measurements. ; Approved Most recent IF: 6.6; 2020 IF: 4.798
Call Number UA @ admin @ c:irua:168536 Serial 6497
Permanent link to this record
 

 
Author (down) Delmelle, R.; Amin-Ahmadi, B.; Sinnaeve, M.; Idrissi, H.; Pardoen, T.; Schryvers, D.; Proost, J.
Title Effect of structural defects on the hydriding kinetics of nanocrystalline Pd thin films Type A1 Journal article
Year 2015 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 40 Issue 40 Pages 7335-7347
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract While the microstructure of a metal is well-known to affect its equilibrium hydrogen uptake and therefore the hydriding thermodynamics, microstructural effects on the hydriding kinetics are much less documented. Moreover, for thin film systems, such microstructural effects are difficult to separate from the internal stress effect, since most defects generate internal stresses. Such a decoupling has been achieved in this paper for nanocrystalline Pd thin film model systems through the use of a high-resolution, in-situ curvature measurement set-up during Pd deposition, annealing and hydriding. This set-up allowed producing Pd thin films with similar internal stress levels but significantly different microstructures. This was evidenced from detailed defect statistics obtained by transmission electron microscopy, which showed that the densities of grain boundaries, dislocations and twin boundaries have all been lowered by annealing. The same set-up was then used to study the hydriding equilibrium and kinetic behaviour of the resulting films at room temperature. A full quantitative analysis of their hydriding cycles showed that the rate constants of both the adsorption- and absorption-limited kinetic regimes were strongly affected by microstructure. Defect engineering was thereby shown to increase the rate constants for hydrogen adsorption and absorption in Pd by a factor 40 and 30, respectively. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000355884300012 Publication Date 2015-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 13 Open Access
Notes Iap 7/21 Approved Most recent IF: 3.582; 2015 IF: 3.313
Call Number c:irua:126429 Serial 838
Permanent link to this record
 

 
Author (down) Coulombier, M.; Baral, P.; Orekhov, A.; Dohmen, R.; Raskin, J.P.; Pardoen, T.; Cordier, P.; Idrissi, H.
Title On-chip very low strain rate rheology of amorphous olivine films Type A1 Journal article
Year 2024 Publication Acta materialia Abbreviated Journal
Volume 266 Issue Pages 119693-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recent observations made by the authors revealed the activation of stress induced amorphization and sliding at grain boundary in olivine [1], a mechanism which is expected to play a pivotal role in the viscosity drop at the lithosphere-asthenosphere boundary and the brittle -ductile transition in the lithospheric mantle. However, there is a lack of information in the literature regarding the intrinsic mechanical properties and the elementary deformation mechanisms of this material, especially at time scales relevant for geodynamics. In the present work, amorphous olivine films were obtained by pulsed laser deposition (PLD). The mechanical response including the rate dependent behavior are investigated using a tension -on -chip (TOC) method developed at UCLouvain allowing to perform creep/relaxation tests on thin films at extremely low strain rates. In the present work, strain rate down to 10-12 s- 1 was reached which is unique. High strain rate sensitivity of 0.054 is observed together with the activation of relaxation at the very early stage of deformation. Furthermore, digital image correlation (DIC), used for the first time on films deformed by TOC, reveals local strain heterogeneities. The relationship between such heterogeneities, the high strain rate sensitivity and the effect of the electron beam in the scanning electron microscope is discussed and compared to the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170513400001 Publication Date 2024-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.4 Times cited Open Access
Notes Approved Most recent IF: 9.4; 2024 IF: 5.301
Call Number UA @ admin @ c:irua:204864 Serial 9163
Permanent link to this record
 

 
Author (down) Colla, M.-S.; Wang, B.; Idrissi, H.; Schryvers, D.; Raskin, J.-P.; Pardoen, T.
Title High strength-ductility of thin nanocrystalline palladium films with nanoscale twins : on-chip testing and grain aggregate model Type A1 Journal article
Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 60 Issue 4 Pages 1795-1806
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The mechanical behaviour of thin nanocrystalline palladium films with an ∼30 nm in plane grain size has been characterized on chip under uniaxial tension. The films exhibit a large strain hardening capacity and a significant increase in the strength with decreasing thickness. Transmission electron microscopy has revealed the presence of a moderate density of growth nanotwins interacting with dislocations. A semi-analytical grain aggregate model is proposed to investigate the impact of different contributions to the flow behaviour, involving the effect of twins, of grain size and of the presence of a thin surface layer. This model provides guidelines to optimizing the strength/ductility ratio of the films.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301989500035 Publication Date 2012-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 38 Open Access
Notes Iap Approved Most recent IF: 5.301; 2012 IF: 3.941
Call Number UA @ lucian @ c:irua:94213 Serial 1465
Permanent link to this record
 

 
Author (down) Colla, M.-S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title Dislocation-mediated relaxation in nanograined columnar ​palladium films revealed by on-chip time-resolved HRTEM testing Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume 6 Issue 6 Pages 5922
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on ​palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as ​palladium membranes for hydrogen applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348742300002 Publication Date 2015-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Iap7/21; Fwo G012012n Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:122045 Serial 731
Permanent link to this record
 

 
Author (down) Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J.
Title Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 235 Issue Pages 118088-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Dynamic recrystallization (DRX) within adiabatic shear bands forming during the fracture of TRIP-TWIP β−metastable Ti-12Mo (wt %) alloy was recently reported. The formation of 1-3 µm thick-adiabatic shear bands, and of dynamic recrystallization, was quite surprising as their occurrence generally requires high temperature and/or high strain rate loading while these samples were loaded in quasi-static conditions at room temperature. To better understand the fracture mechanism and associated microstructural evolution, thin foils representative of different stages of the fracture process were machined from the fracture surface by Focused Ion Beam (FIB) and analyzed by Transmission Electron Microscopy (TEM) and Automated Crystal Orientation mapping (ACOM-TEM). Complex microstructure transformations involving severe plastic deformed nano-structuration, crystalline rotation and local precipitation of the omega phase were identified. The spatial and temporal evolution of the microstructure during the propagation of the crack was explained through dynamic recovery and continuous dynamic recrystallization, and linked to the modelled distribution of temperature and strain level where TEM samples were extracted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814729300005 Publication Date 2022-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:188505 Serial 7096
Permanent link to this record
 

 
Author (down) Choisez, L.; Ding, L.; Marteleur, M.; Idrissi, H.; Pardoen, T.; Jacques, P.J.
Title High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 2110
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Extensive use of titanium alloys is partly hindered by a lack of ductility, strain hardening, and fracture toughness. Recently, several beta -metastable titanium alloys were designed to simultaneously activate both transformation-induced plasticity and twinning-induced plasticity effects, resulting in significant improvements to their strain hardening capacity and resistance to plastic localization. Here, we report an ultra-large fracture resistance in a Ti-12Mo alloy (wt.%), that results from a high resistance to damage nucleation, with an unexpected fracture phenomenology under quasi-static loading. Necking develops at a large uniform true strain of 0.3 while fracture initiates at a true fracture strain of 1.0 by intense through-thickness shear within a thin localized shear band. Transmission electron microscopy reveals that dynamic recrystallization occurs in this band, while local partial melting is observed on the fracture surface. Shear band temperatures of 1250-2450 degrees C are estimated by the fusible coating method. The reported high ductility combined to the unconventional fracture process opens alternative avenues toward Ti alloys toughening. Specific titanium alloys combine transformation-induced plasticity and twinning-induced plasticity for improved work hardening. Here, the authors show that these alloys also have an ultra-large fracture resistance and an unexpected fracture mechanism via dynamic recrystallization and local melting in a deformation band.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000558816700010 Publication Date 2020-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access OpenAccess
Notes ; The Fonds National de Recherche Scientifique FNRS is gratefully acknowledged for the grant no. T.0127.19, the research grant of L.C. and the research mandate of H.I. The authors are thankful to J. Adrien and E. Maire for their help with the X-ray tomography analysis, to J.D. Embury for the fruitful discussions and to F. Prima for provisioning the material. ; Approved Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:171318 Serial 6536
Permanent link to this record
 

 
Author (down) Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
Year 2024 Publication Small Structures Abbreviated Journal
Volume Issue Pages 2400011-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2688-4062 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record
 

 
Author (down) Boulay, E.; Ragoen, C.; Idrissi, H.; Schryvers, D.; Godet, S.
Title Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO-TiO2-SiO2 system Type A1 Journal article
Year 2014 Publication Journal of non-crystalline solids Abbreviated Journal J Non-Cryst Solids
Volume 384 Issue Pages 61-72
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the interplay between a prior amorphous phase separation and the crystallization of fresnoite in the BaO-TiO2-SiO2 system. The crystallization behavior of a non-stoichiometric composition inside the miscibility gap (called APS) is compared with the stoichiometric composition (called FRES) and a non-stoichiometric composition outside the miscibility gap (called NoAPS). The crystallization mechanisms are compared using differential thermal analysis (DTA) by calculating the Avrami parameters and the activation energies as a function of the particle size. The DTA study shows that the two non-stoichiometric compositions exhibit a pronounced surface crystallization behavior whereas FRES undergoes bulk nucleation. This is supported by a multi-scale microstructure characterization. Furthermore, this study demonstrates that the amorphous phase separation and the associated interfaces do not play any significant role in the nucleation step. Moreover, transmission electron microscope (TEM) and local orientation measurements show that the growth of the dendrites is not hindered by the SiO2-rich droplets. The final stage of crystallization of APS is tentatively explained by two composition effects that must be further investigated: the viscosity effect and the formation of a eutectic. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329422400010 Publication Date 2013-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.124 Times cited 10 Open Access
Notes Approved Most recent IF: 2.124; 2014 IF: 1.766
Call Number UA @ lucian @ c:irua:114782 Serial 1614
Permanent link to this record
 

 
Author (down) Boulay, E.; Nakano, J.; Turner, S.; Idrissi, H.; Schryvers, D.; Godet, S.
Title Critical assessments and thermodynamic modeling of BaO-SiO2 and SiO2-TiO2 systems and their extensions into liquid immiscibility in the BaO-SiO2-TiO2 system Type A1 Journal article
Year 2014 Publication Calphad computer coupling of phase diagrams and thermochemistry Abbreviated Journal Calphad
Volume 47 Issue Pages 68-82
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study discusses rational reproduction of liquid immiscibility in the BaO-SiO2-TiO2 system. While a ternary assessment requires sub-binary descriptions in the same thermodynamic model, the related sub-binary systems BaO-SiO2, BaO-TiO2 and SiO2-TiO2 liquid and solid phases have been evaluated using different thermodynamic models in the literature. In this study, BaO-SiO2 and SiO2-TiO2 were assessed using the Ionic Two Sublattice model (I2SL) based on experimental data from the literature. BaO-TiO2 was already assessed using this model. Binary descriptions developed were then used for the assessment of liquid immiscibility in the BaO-SiO2-TiO2 system. Ternary interaction parameters were found necessary for rational reproduction of the new ternary experimental data gathered in the present work. The model parameters for each system were evaluated using a CAPLHAD approach. A set of parameters is proposed. They show good agreement between the calculated and experimental equilibrium liquidus, liquid immiscibility and thermochemical properties in the BaO-SiO2-TiO2 system. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000346224700008 Publication Date 2014-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0364-5916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.6 Times cited 9 Open Access
Notes Approved Most recent IF: 1.6; 2014 IF: 1.370
Call Number UA @ lucian @ c:irua:122776 Serial 540
Permanent link to this record
 

 
Author (down) Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M.
Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
Year 2022 Publication Materials & design Abbreviated Journal Mater Design
Volume 221 Issue Pages 110972-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000886072100004 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4
Call Number UA @ admin @ c:irua:192194 Serial 7299
Permanent link to this record
 

 
Author (down) Baral, P.; Orekhov, A.; Dohmen, R.; Coulombier, M.; Raskin, J.P.; Cordier, P.; Idrissi, H.; Pardoen, T.
Title Rheology of amorphous olivine thin films characterized by nanoindentation Type A1 Journal article
Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume 219 Issue Pages 117257
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The rheological properties of amorphous olivine thin films deposited by pulsed laser deposition have been studied based on ambient temperature nanoindentation under constant strain-rate as well as re-laxation conditions. The amorphous olivine films exhibit a viscoelastic-viscoplastic behavior with a significant rate dependency. The strain-rate sensitivity m is equal to similar to 0 . 05 which is very high for silicates, indicating a complex out-of-equilibrium structure. The minimum apparent activation volume determined from nanoindentation experiments corresponds to Mg and Fe atomic metallic sites in the (Mg,Fe)(2)SiO4 crystalline lattice. The ambient temperature creep behavior of the amorphous olivine films differs very much from the one of single crystal olivine. This behavior directly connects to the recent demonstration of the activation of grain boundary sliding in polycrystalline olivine following grain boundary amorphization under high-stress. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000706867800004 Publication Date 2021-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ admin @ c:irua:182592 Serial 6882
Permanent link to this record
 

 
Author (down) Bahrami, F.; Hammad, M.; Fivel, M.; Huet, B.; D'Haese, C.; Ding, L.; Nysten, B.; Idrissi, H.; Raskin, J.P.; Pardoen, T.
Title Single layer graphene controlled surface and bulk indentation plasticity in copper Type A1 Journal article
Year 2021 Publication International Journal Of Plasticity Abbreviated Journal Int J Plasticity
Volume 138 Issue Pages 102936
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The impact of graphene reinforcement on the mechanical properties of metals has been a subject of intense investigation over the last decade in surface applications to mitigate the impact of tribological loadings or for strengthening purposes when dispersed into a bulk material. Here, the effect on the plastic indentation response of a single graphene layer grown on copper is analyzed for two configurations: one with graphene at the surface, the other with graphene sandwiched under a 100 nm thick copper cap layer. Nanoindentation under both displacement and load control conditions show both earlier and shorter pop-in excursions compared to systems without graphene. Atomic force microscopy reveals much smoother pile-ups with no slip traces in the presence of a surface graphene layer. The configuration with the intercalated graphene layer appears as an ideal elementary system to address bulk hardening mechanisms by indentation testing. Transmission electron microscopy (TEM) cross-sections below indents show more diffuse and homogeneous dislocation activity in the presence of graphene. 3D dislocation dynamics simulations allow unraveling of the origin of these 3D complex phenomena and prove that the collective dislocation mechanisms are dominantly controlled by the strong back stress caused by the graphene barrier. These results provide a quantitative understanding of the impact of graphene on dislocation mechanisms for both surface and bulk applications, but with an impact that is not as large as anticipated from other studies or general literature claims.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623869800001 Publication Date 2021-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6419 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.702 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.702
Call Number UA @ admin @ c:irua:176729 Serial 6735
Permanent link to this record
 

 
Author (down) Bagherpour, A.; Baral, P.; Colla, M.-S.; Orekhov, A.; Idrissi, H.; Haye, E.; Pardoen, T.; Lucas, S.
Title Tailoring Mechanical Properties of a-C:H:Cr Coatings Type A1 Journal Article
Year 2023 Publication Coatings Abbreviated Journal Coatings
Volume 13 Issue 12 Pages 2084
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The development of coatings with tunable performances is critical to meet a wide range of technological applications each one with different requirements. Using the plasma-enhanced chemical vapor deposition (PECVD) process, scientists can create hydrogenated amorphous carbon coatings doped with metal (a-C:H:Me) with a broad range of mechanical properties, varying from those resembling polymers to ones resembling diamond. These diverse properties, without clear relations between the different families, make the material selection and optimization difficult but also very rich. An innovative approach is proposed here based on projected performance indices related to fracture energy, strength, and stiffness in order to classify and optimize a-C:H:Me coatings. Four different a-C:H:Cr coatings deposited by PECVD with Ar/C2H2 discharge under different bias voltage and pressures are investigated. A path is found to produce coatings with a selective critical energy release rate between 5–125 J/m2 without compromising yield strength (1.6–2.7 GPa) and elastic limit (≈0.05). Finally, fine-tuned coatings are categorized to meet desired applications under different testing conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001136013600001 Publication Date 2023-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Walloon region under the PDR FNRS, C 62/5—PDR/OL 33677636 ; Belgian National Fund for Scientific Research, CDR—J.0113.20 ; National Fund for Scientific Reaserch; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:202390 Serial 8982
Permanent link to this record
 

 
Author (down) Arseenko, M.; Hannard, F.; Ding, L.; Zhao, L.; Maire, E.; Villanova, J.; Idrissi, H.; Simar, A.
Title A new healing strategy for metals : programmed damage and repair Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 238 Issue Pages 118241-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Self-healing strategies aim at avoiding part repair or even replacement, which is time consuming, expen-sive and generates waste. However, strategies for metallic systems are still under-developed and solid-state solutions for room temperature service are limited to nano-scale damage repair. Here we propose a new healing strategy of micron-sized damage requiring only short and low temperature heating. This new strategy is based on damage localization particles, which can be healed by fast diffusing atoms of the matrix activated during heat treatment. The healing concept was successfully validated with a com-mercial aluminum alloy and manufactured by Friction Stir Processing (FSP). Damage was demonstrated to initiate on particles that were added to the matrix during material processing. In situ 2D and 3D nano -imaging confirmed healing of the damaged material and showed that heating this material for 10 min at 400 degrees C is sufficient to heal incipient damage with complete filling of 70% of all damage (and up to 90% when their initial size is below 0.2 mu m). Furthermore, strength is retained and the work of fracture of the alloy is improved by about 40% after healing. The proposed Programmed Damage and Repair healing strategy could be extended to other metal based systems presenting precipitation. (C) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000843502700006 Publication Date 2022-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:190561 Serial 7121
Permanent link to this record
 

 
Author (down) Amin-Ahmadi, B.; Idrissi, H.; Galceran, M.; Colla, M.S.; Raskin, J.P.; Pardoen, T.; Godet, S.; Schryvers, D.
Title Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films Type A1 Journal article
Year 2013 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 539 Issue Pages 145-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 5565° leads to a higher potential for twin formation.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000321111100025 Publication Date 2013-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 13 Open Access
Notes Fwo Approved Most recent IF: 1.879; 2013 IF: 1.867
Call Number UA @ lucian @ c:irua:109268 Serial 807
Permanent link to this record
 

 
Author (down) Amin-Ahmadi, B.; Idrissi, H.; Delmelle, R.; Pardoen, T.; Proost, J.; Schryvers, D.
Title High resolution transmission electron microscopy characterization of fcc -> 9R transformation in nanocrystalline palladium films due to hydriding Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 7 Pages 071911-71914
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sputtered nanocrystalline palladium thin films with nanoscale growth twins have been subjected to hydriding cycles. The evolution of the twin boundaries has been investigated using high resolution transmission electron microscopy. Surprisingly, the Sigma 3{112} incoherent twin boundaries dissociate after hydriding into two phase boundaries bounding a 9R phase. This phase which corresponds to single stacking faults located every three {111} planes in the fcc Pd structure was not expected because of the high stacking fault energy of Pd. This observation is connected to the influence of the Hydrogen on the stacking fault energy of palladium and the high compressive stresses building up during hydriding. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793512]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000315596700023 Publication Date 2013-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes Iap Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:108303 Serial 1462
Permanent link to this record
 

 
Author (down) Amin-Ahmadi, B.; Connétable, D.; Fivel, M.; Tanguy, D.; Delmelle, R.; Turner, S.; Malet, L.; Godet, S.; Pardoen, T.; Proost, J.; Schryvers, D.; Idrissi, H.
Title Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue 111 Pages 253-261
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375812100027 Publication Date 2016-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 14 Open Access
Notes This work was carried out in the framework of the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. The support of the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations” for B. Amin-Ahmadi is also gratefully acknowledged. This work was granted access to the HPC resources of CALMIP (CICT Toulouse, France) under the allocations 2014-p0912 and 2014-p0749. Approved Most recent IF: 5.301
Call Number c:irua:132678 Serial 4054
Permanent link to this record