|   | 
Details
   web
Records
Author (up) Altantzis, T.; Coutino-Gonzalez, E.; Baekelant, W.; Martinez, G.T.; Abakumov, A.M.; Van Tendeloo, G.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.
Title Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites Type A1 Journal article
Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
Volume 10 Issue 10 Pages 7604-7611
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.
Address RIES, Hokkaido University , N20W10, Kita-Ward Sapporo 001-0020, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381959100043 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 57 Open Access OpenAccess
Notes The authors gratefully acknowledge financial support from the Belgian Federal government (Belspo through the IAP-VI/27 and IAP-VII/05 programs), the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 310651 SACS and no. 312483-ESTEEM2), the Flemish government in the form of long-term structural funding “Methusalem” grant METH/15/04 CASAS2, the Hercules foundation (HER/11/14), the “Strategisch Initiatief Materialen” SoPPoM program, and the Fund for Scientific Research Flanders (FWO) grants G.0349.12 and G.0B39.15. S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The authors thank Prof. S. Van Aert for helpful discussions, Dr. T. De Baerdemaeker for XRD measurements, Mr. B. Dieu for the preparation of graphical material, and UOP Antwerp for the kind donation of zeolite samples.; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942
Call Number c:irua:134576 c:irua:134576 Serial 4102
Permanent link to this record
 

 
Author (up) Antipov, E.V.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Hadermann, J.; Lebedev, O.I.; Van Tendeloo, G.
Title Oxygen and fluorine doping in Sr2MnGaO5 brownmillerite Type A1 Journal article
Year 2004 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume 201 Issue 7 Pages 1403-1409
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000221836300008 Publication Date 2004-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:49464 Serial 2544
Permanent link to this record
 

 
Author (up) Antipov, E.V.; Putilin, S.N.; Shpanchenko, R.V.; Alyoshin, V.A.; Rozova, M.G.; Abakumov, A.M.; Mikhailova, D.A.; Balagurov, A.M.; Lebedev, O.; Van Tendeloo, G.
Title Structural features, oxygen and fluorine doping in Cu-based superconductors Type A1 Journal article
Year 1997 Publication Physica: C : superconductivity T2 – International Conference on Materials and Mechanisms of, Superconductivity – High Temperature Superconductors V, Feb. 28-Mar. 04, 1997, Beijing, Peoples R. China Abbreviated Journal Physica C
Volume 282 Issue Part 1 Pages 61-64
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The variation of structures and superconducting properties by changing extra oxygen or fluorine atoms concentration in Hg-based Cu mixed oxides and YBa2Cu3O6+delta was studied. The data obtained by NPD study of Hg-1201 can be considered as an evidence of the conventional oxygen doping mechanism with 2 delta holes per (CuO2) layer. The extra oxygen atom was found to be located in the middle of the Hg mesh only. Different formal charges of oxygen and fluorine inserted into reduced 123 structure results in its distinct variations. The fluorine incorporation into strongly reduced YBa2Cu3O6+delta causes a significant structural rearrangement and the formation of a new compound with a composition close to YBa2Cu3O6F2 (tetragonal alpha = 3.87 Angstrom and c approximate to 13 Angstrom), which structure was deduced from the combined results of X-ray diffraction, electron diffraction and high resolution electron microscopy. Fluorination treatment by XeF2 of nonsuperconducting 123 samples causes an appearance of bulk superconductivity with T-c up to 94K.
Address
Corporate Author Thesis
Publisher Elsevier Science Place of Publication Amsterdam Editor
Language Wos A1997XZ90400019 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 10 Open Access
Notes Approved Most recent IF: 1.404; 1997 IF: 2.199
Call Number UA @ lucian @ c:irua:95866 Serial 3237
Permanent link to this record
 

 
Author (up) Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J.
Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
Volume 71 Issue 71 Pages 127-143
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000352166500002 Publication Date 2015-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.032 Times cited 11 Open Access
Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA
Call Number c:irua:124411 Serial 3408
Permanent link to this record
 

 
Author (up) Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J.
Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 17 Pages 10009-10020
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000326129000037 Publication Date 2013-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:111394 Serial 822
Permanent link to this record
 

 
Author (up) Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M.
Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 56 Pages 931-942
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000392262400029 Publication Date 2016-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:141471 Serial 4495
Permanent link to this record
 

 
Author (up) Batuk, D.; Batuk, M.; Morozov, V.A.; Meert, K.W.; Smet, P.F.; Poelman, D.; Abakumov, A.M.; Hadermann, J.
Title Effect of cation vacancies on the crystal structure and luminescent properties of Ca(0.85-1.5x)Gd(x)Eu(0.1)_(0.05+0.5x)WO(4) (0<x<0.567) scheelite-based red phosphors Type A1 Journal article
Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 706 Issue 706 Pages 358-369
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Ca0.85-1.5xGdxEu0.1_0.05-0.5xWO4 (0 < x < 0.567) series of cation-deficient scheelites is investigated to unveil the influence of the cation vacancies on the crystal structure and luminescent properties. The concentration of the vacancies is varied by the heterovalent substitution of Gd3+ for Ca2+, keeping the concentration of the Eu3+ luminescent centers constant in all compounds of the series. The crystal structure of the materials is studied using a combination of transmission electron microscopy and synchrotron X-ray powder diffraction. At low vacancy concentration (x = 0.1, 0.2), cations and cation vacancies are randomly distributed in the structure, and the materials preserve the I41/a symmetry of the parent scheelite structure [x = 0.1: a = 5.25151(1) Å, c = 11.39479(2) Å; x = 0.2: a = 5.25042(1) Å, c = 11.41335(2) Å]. At higher concentration, the cation-vacancy ordering gives rise to incommensurately modulated structures. The x = 0.3 structure has a (3 + 2)D tetragonal symmetry [superspace group I41/a(a,b,0)00(-b,a,0)00, a = 5.24700(1) Å, c = 11.45514(3) Å, q1 = 0.51637(14)a* + 0.80761(13)b*, q2 = -0.80761a* + 0.51637b*]. At x = 0.4, the scheelite basic cell undergoes a monoclinic distortion with the formation of the (3 + 1)D structure [superspace group I2/b(a,b,0)00, a = 5.23757(1) Å, b = 5.25035(1) Å, c = 11.45750(2) Å, g = 90.5120(2) o, q = 0.54206(8)a* + 0.79330(8)b*]. In both structures, the antiphase Ca and (Gd,Eu) occupancy modulations indicate that the ordering between the A cations and vacancies also induces partial Ca/(Gd,Eu) cation ordering. Further increase of the Gd3þ content up to x = 0.567 leads to the formation of a monoclinic phase (space group C2/c) with the Eu2/3WO4-type structure. Despite the difference in the cation-vacancy ordering patterns, all materials in the series demonstrate very similar quantum efficiency and luminescence decay lifetimes. However, the difference in the local coordination environment of the A cation species noticeably affects the line width and the multiplet splitting of the 4f6-4f6 transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397997300045 Publication Date 2017-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 2 Open Access OpenAccess
Notes This research was supported by FWO (Flanders Research Foundation, project G039211N). V.A.M. is grateful for financial support of the Russian Foundation for Basic Research (Grant 15-03-07741).We are grateful to the ESRF for granting the beamtime at the ID22 beamline and to Andy Fitch for the support during the experiment. Approved Most recent IF: 3.133
Call Number EMAT @ emat @ c:irua:142367 Serial 4581
Permanent link to this record
 

 
Author (up) Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M.
Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 54 Issue 54 Pages 14787-14790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.
Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000367723400031 Publication Date 2015-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 3 Open Access
Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261
Call Number c:irua:131104 Serial 4080
Permanent link to this record
 

 
Author (up) Batuk, D.; de Dobbelaere, C.; Tsirlin, A.A.; Abakumov, A.M.; Hardy, A.; van Bael, M.K.; Greenblatt, M.; Hadermann, J.
Title Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6 Type A1 Journal article
Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 48 Issue 9 Pages 2993-2997
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the Cr3+ for Mn3+ substitution in the BiMnFe2O6 structure. The BiCrxMn1-xFe2O6 solid solution is obtained by the solution-gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe2O6 structure (for x = 0.3, a = 5.02010(6)angstrom, b = 7.06594(7)angstrom, c = 12.6174(1)angstrom, S.G. Pbcm, R-1 = 0.036, R-p = 0.011) with only a slight decrease in the cell parameters associated with the Cr3+ for Mn3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCrxMn1-xFe2O6 (x = 0.2; 0.3) and parent BiMnFe2O6. Only T-N slightly decreases upon Cr doping that indicates a very subtle influence of Cr3+ cations on the magnetic properties at the available substitution rates. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322354000002 Publication Date 2013-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 3 Open Access
Notes Fwo Approved Most recent IF: 2.446; 2013 IF: 1.968
Call Number UA @ lucian @ c:irua:109755 Serial 561
Permanent link to this record
 

 
Author (up) Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M.
Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages 1245-1257
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.
Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369356800031 Publication Date 2016-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857
Call Number c:irua:132247 Serial 4073
Permanent link to this record
 

 
Author (up) Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J.
Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 215 Issue Pages 245-252
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000336891300037 Publication Date 2014-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 4 Open Access
Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133
Call Number UA @ lucian @ c:irua:117066 Serial 3551
Permanent link to this record
 

 
Author (up) Batuk, M.; Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Sheptyakov, D.V.; Frontzek, M.; Hadermann, J.; Abakumov, A.M.
Title Layered oxychlorides [PbBiO2]An+1BnO3n-1Cl2(A = Pb/Bi, B = Fe/Ti) : intergrowth of the hematophanite and sillen phases Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 2946-2956
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New layered structures corresponding to the general formula [PbBiO2]A(n+1)B(n)O(3n-1)Cl(2) Were prepared. Pb5BiFe3O10Cl2 (n = 3) and Pb5Bi2Fe4O13Cl2 (n = 4) are built as a stacking of truncated A(n+1)B(n)O(3n-1) perovskite blocks and alpha-PbO-type [A(2)O(2)](2+) (A = Pb, Bi) blocks combined with chlorine sheets. The alternation of these structural blocks can be represented as an intergrowth between the hematophanite and Sullen-type structural blocks. The crystal and-Magnetic structures of Pb5BiFe3O10Cl2 and Pb5Bi2Fe4O13Cl2 were investigated in the temperature range of 1.5-700 K using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy. Both compounds crystallize in the I4/mmm space group with the unit cell parameters a approximate to a(p) approximate to 3.92 angstrom (a unit-cell parameter of the perovskite-structure), c approximate to 43.0 angstrom for the n = 3 member and c approximate to 53.5 angstrom for the n = 4 member. Despite the large separation between the slabs containing the Fe3+ ions (nearly 14 angstrom), long-range antiferromagnetic order sets in below similar to 600 K with the G-type arrangement of the Fe magnetic moments aligned along the c-axis. The possibility of mixing d(0) and d(n) cations at the B sublattice of these structures was also demonstrated by preparing the Ti-substituted n = 4 member Pb6BiFe3TiO13Cl2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353865800028 Publication Date 2015-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:126060 Serial 1807
Permanent link to this record
 

 
Author (up) Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G.
Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue 4 Pages 2171-2180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000332144100039 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access
Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:113507 Serial 198
Permanent link to this record
 

 
Author (up) Batuk, M.; Tyablikov, O.A.; Tsirlin, A.A.; Kazakov, S.M.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.; Abakumov, A.M.; Hadermann, J.
Title Structure and magnetic properties of a new anion-deficient perovskite Pb2Ba2BiFe4ScO13 with crystallographic shear structure Type A1 Journal article
Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 48 Issue 9 Pages 3459-3465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb2Ba2BiFe4ScO13, a new n = 5 member of the oxygen-deficient perovskite-based A(n)B(n)O(3n-2) homologous series, was synthesized using a solid-state method. The crystal structure of Pb2Ba2BiFe4ScO13 was investigated by a combination of synchrotron X-ray powder diffraction, electron diffraction, high-angle annular dark-field scanning transmission electron microscopy and Mossbauer spectroscopy. At 900 K, it crystallizes in the Ammm space group with the unit cell parameters a = 5.8459(1) angstrom, b = 4.0426(1) angstrom, and c=27.3435(1) angstrom. In the Pb2Ba2BiFe4ScO13 structure, quasi-two-dimensional perovskite blocks are periodically interleaved with 1/2[1 1 0] ((1) over bar 0 1)(p) crystallographic shear (CS) planes. At the CS planes, the corner-sharing FeO6 octahedra are transformed into chains of edge-sharing FeO5 distorted tetragonal pyramids. B-positions of the perovskite blocks between the CS planes are jointly occupied by Fe3+ and Sc3+. The chains of the FeO5 pyramids and (Fe,Sc)O-6 octahedra delimit six-sided tunnels that are occupied by double columns of cations with a lone electron pair (Pb2+). The remaining A-cations (Bi3+, Ba2+) occupy positions in the perovskite block. According to the magnetic susceptibility measurements, Pb2Ba2BiFe4ScO13 is antiferromagnetically ordered below T-N approximate to 350 K. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322354000076 Publication Date 2013-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 2 Open Access
Notes Approved Most recent IF: 2.446; 2013 IF: 1.968
Call Number UA @ lucian @ c:irua:109756 Serial 3282
Permanent link to this record
 

 
Author (up) Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; Van Tendeloo, G.; Takayama-Muromachi, E.
Title Article Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 20 Pages 4505-4514
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid solutions of BiFe1xMnxO3 (0.0 ≤ x ≤ 0.4) were prepared at ambient pressure and at 6 GPa. The ambient-pressure (AP) phases crystallize in space group R3c similarly to BiFeO3. The high-pressure (HP) phases crystallize in space group R3c for x = 0.05 and in space group Pnma for 0.15 ≤ x ≤ 0.4. The structure of HP-BiFe0.75Mn0.25O3 was investigated using synchrotron X-ray powder diffraction, electron diffraction, and transmission electron microscopy. HP-BiFe0.75Mn0.25O3 has a PbZrO3-related √2ap × 4ap × 2√2ap (ap is the parameter of the cubic perovskite subcell) superstructure with a = 5.60125(9) Å, b = 15.6610(2) Å, and c = 11.2515(2) Å similar to that of Bi0.82La0.18FeO3. A remarkable feature of this structure is the unconventional octahedral tilt system, with the primary ab0a tilt superimposed on pairwise clockwise and counterclockwise rotations around the b-axis according to the oioi sequence (o stands for out-of-phase tilt, and i stands for in-phase tilt). The (FeMn)O6 octahedra are distorted, with one longer metaloxygen bond (2.222.23 Å) that can be attributed to a compensation for covalent BiO bonding. Such bonding results in the localization of the lone electron pair on Bi3+ cations, as confirmed by electron localization function analysis. The relationship between HP-BiFe0.75Mn0.25O3 and antiferroelectric structures of PbZrO3 and NaNbO3 is discussed. On heating in air, HP-BiFe0.75Mn0.25O3 irreversibly transforms to AP-BiFe0.75Mn0.25O3 starting from about 600 K. Both AP and HP phases undergo an antiferromagnetic ordering at TN ≈ 485 and 520 K, respectively, and develop a weak net magnetic moment at low temperatures. Additionally, ceramic samples of AP-BiFe0.75Mn0.25O3 show a peculiar phenomenon of magnetization reversal.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295897400015 Publication Date 2011-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 57 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:93581 Serial 151
Permanent link to this record
 

 
Author (up) Berdonosov, P.S.; Akselrud, L.; Prots, Y.; Abakumov, A.M.; Smet, P.F.; Poelman, D.; Van Tendeloo, G.; Dolgikh, V.A.
Title Cs7Nd11(SeO3)12Cl16 : first noncentrosymmetric structure among alkaline-metal lanthanide selenite halides Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 7 Pages 3611-3619
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Cs7Nd11(SeO3)(12)Cl-16, the complex selenite chloride of cesium and neodymium, was synthesized in the NdOCl-SeO2-CsCl system. The compound has been characterized using single-crystal X-ray diffraction, electron diffraction, transmission electron microscopy, luminescence spectroscopy, and second-harmonic-generation techniques. Cs7Nd11(SeO3)(12)Cl-16 crystallizes in an orthorhombic unit cell with a = 15.911(1) angstrom, b = 15.951(1) angstrom, and c = 25.860(1) angstrom and a noncentrosymmetric space group Pna2(1) (No. 33). The crystal structure of Cs7Nd11(SeO3)(12)Cl-16 can be represented as a stacking of Cs7Nd11(SeO3)(12) lamellas and CsCl-like layers. Because of the layered nature of the Cs7Nd11(SeO3)(12)Cl-16 structure, it features numerous planar defects originating from occasionally missing the CsCl-like layer and violating the perfect stacking of the Cs7Nd11(SeO3)(12)Cl-16 lamellas. Cs7Nd11(SeO3)(12)Cl-16 represents the first example of a noncentrosymmetric structure among alkaline-metal lanthanide selenite halides. Cs7Nd11(SeO3)(12)Cl-16 demonstrates luminescence emission in the near-IR region with reduced efficiency due to a high concentration of Nd3+ ions causing nonradiative cross-relaxation.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000317094300022 Publication Date 2013-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 10 Open Access
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:108482 Serial 3524
Permanent link to this record
 

 
Author (up) Bezjak, J.; Abakumov, A.M.; Recnik, A.; Krzmanc, M.M.; Jancar, B.; Suvorov, D.
Title The local structure and composition of Ba4Nb2O9-based oxycarbonates Type A1 Journal article
Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 183 Issue 8 Pages 1823-1828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract X-ray powder-diffraction(XRD),high-resolutiontransmissionelectronmicroscopy(HRTEM),electron diffraction(ED),infraredspectroscopy(IR),thermogravimetry(TG)andmassspectroscopy(MS)were performedtoinvestigatethecompositionandthecrystalstructureoftetra-bariumdi-niobate(V) Ba4Nb2O9. TheTG,MSandIRstudiesrevealedthatthecompoundisahydratedoxycarbonate.Assuming that thecarbonatestoichiometricallyreplacesoxygen,thecompositionofthelow-temperature a-modification,obtainedbyslowcoolingfrom1100 1C, correspondstoBa4Nb2O8.8(CO3)0.2 0.1H2O, while thequenchedhigh-temperature g-modificationhastheBa4Nb2O8.42(CO3)0.58 0.38H2O composi- tion. The a-phase hasacompositeincommensuratelymodulatedstructureconsistingoftwomutually interacting[Ba]N and the[(Nb,)O3]N subsystems.Thecompositemodulatedcrystalstructureofthe a-phase canbedescribedwiththelatticeparameters a¼10.2688(1) A˚ , c¼2.82426(8) A˚ , q¼0.66774(2)c* and asuperspacegroup R3m(00g)0s. TheHRTEManalysisdemonstratesthenanoscale twinningofthetrigonaldomainsparalleltothe{100}crystallographicplanes.Thetwinningintroduces a one-dimensionaldisorderintothe[(Nb,)O3]N subsystem,whichresultsinanaverage P62c crystal structureofthe a-phase. Possibleplacesforthecarbonategroupinthestructurearediscussedusinga comparisonwithotherhexagonalperovskite-basedoxycarbonates.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000280620300013 Publication Date 2010-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 10 Open Access
Notes Approved Most recent IF: 2.299; 2010 IF: 2.261
Call Number UA @ lucian @ c:irua:84046 Serial 1830
Permanent link to this record
 

 
Author (up) Bramnik, K.G.; Abakumov, A.M.; Shpanchenko, R.V.; Antipov, E.V.; Van Tendeloo, G.
Title Synthesis and structure of Ln4Re6-xO19 (Ln=Ce, Pr, Nd) complex oxides Type A1 Journal article
Year 1998 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 278 Issue Pages 98-102
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000075799200020 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 8 Open Access
Notes Approved Most recent IF: 3.133; 1998 IF: 0.880
Call Number UA @ lucian @ c:irua:25677 Serial 3444
Permanent link to this record
 

 
Author (up) Caignaert, V.; Abakumov, A.M.; Pelloquin, D.; Pralong, V.; Maignan, A.; Van Tendeloo, G.; Raveau, B.
Title A new mixed-valence ferrite with a cubic structure, YBaFe4O7: spin-glass-like behavior Type A1 Journal article
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 21 Issue 6 Pages 1116-1122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new mixed-valence ferrite, YBaFe4O7, has been synthesized. Its unique cubic structure, with a = 8.9595(2) Å, is closely related to that of the hexagonal 114 oxides YBaCo4O7 and CaBaFe4O7. It consists of corner-sharing FeO4 tetrahedra, forming triangular and kagome layers parallel to (111)C. In fact, the YBaFe4O7 and CaBaFe4O7 structures can be described as two different ccc and chch close packings of [BaO3]∞ and [O4]∞ layers, respectively, whose tetrahedral cavities are occupied by Fe2+/Fe3+ cations. The local structure of YBaFe4O7 is characterized by a large amount of stacking faults originating from the presence of hexagonal layers in the ccc cubic close-packed YBaFe4O7 structure. In this way, they belong to the large family of spinels and hexagonal ferrites studied for their magnetic properties. Differently from all the ferrites and especially from CaBaFe4O7, which are ferrimagnetic, YBaFe4O7 is an insulating spin glass with Tg = 50 K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000264310900019 Publication Date 2009-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 39 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:76432 Serial 2325
Permanent link to this record
 

 
Author (up) Charkin, D.O.; Akinfiev, V.S.; Alekseeva, A.M.; Batuk, M.; Abakumov, A.M.; Kazakov, S.M.
Title Synthesis and cation distribution in the new bismuth oxyhalides with the Sillen-Aurivillius intergrowth structures Type A1 Journal article
Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 44 Issue 44 Pages 20568-20576
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract About 20 new compounds with the Sillen-Aurivillius intergrowth structure, (MeMeBi3Nb2O11X)-Me-1-Bi-2 (Me-1 = Pb, Sr, Ba; Me-2 = Ca, Sr, Ba; X = Cl, Br, I), have been prepared. They are composed of stacking of [ANb(2)O(7)] perovskite blocks, fluorite-type [M2O2] blocks and halogen sheets. The cation distribution between the fluorite and perovskite layers has been studied for Ba2Bi3Nb2O11I, Ca1.25Sr0.75Bi3Nb2O11Cl, BaCaBi3Nb2O11Br and Sr2Bi3Nb2O11Cl. The smaller Me cations tend to reside in the perovskite block while the larger ones are situated in the fluorite-type block. The distribution of the elements was confirmed for BaCaBi3Nb2O11Br using energy dispersive X-ray analysis combined with scanning transmission electron microscopy (STEM-EDX). An electron diffraction study of this compound reveals a local symmetry lowering caused by weakly correlated rotation of NbO6 octahedra. Based on our findings, we suggest a new stability criterion for mixed-layer structures, which is that net charges of any two consecutive layers do not compensate for each other and only the whole layer sequence is electroneutral.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000365411500036 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130330 Serial 4256
Permanent link to this record
 

 
Author (up) Charkin, D.O.; Plokhikh, I.V.; Kazakov, S.M.; Kalmykov, S.N.; Akinfiev, V.S.; Gorbachev, A.V.; Batuk, M.; Abakumov, A.M.; Teterin, Y.A.; Maslakov, K.I.; Teterin, A.Y.; Ivanov, K.E.
Title Synthesis and structural characterization of a novel Sillén – Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives Type A1 Journal article
Year 2018 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 75 Issue Pages 27-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new Sillen – Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X(X = halogen) synthetic perites and g-form of Bi2VO5.5 solid elec- trolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-dCl (d = 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb – Bi vanadates. This reduction also stabilizes the g polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M – Nb, Sb) solid solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418566200005 Publication Date 2017-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 1 Open Access Not_Open_Access
Notes The work was partially supported by M.V. Lomonosov Moscow State University Program of Development and Russian Science Foundation under Grant No.14-13-00738. We also thank Dr. K.V. Zakharov (MSU) for the magnetic measurements of the PbBi3- VO7.5Cl sample. Approved Most recent IF: 1.811
Call Number EMAT @ emat @c:irua:147239 Serial 4769
Permanent link to this record
 

 
Author (up) Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M.
Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 205 Issue Pages 305-312
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000343117600041 Publication Date 2014-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 36 Open Access
Notes Approved Most recent IF: 5.401; 2014 IF: 4.097
Call Number UA @ lucian @ c:irua:121107 Serial 3848
Permanent link to this record
 

 
Author (up) Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Marchevsky, A.V.; Karakulina, O.M.; Abakumov, A.M.; Gaskov, A.M.
Title Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots Type A1 Journal article
Year 2016 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 618 Issue 618 Pages 253-262
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work reports the analysis of visible light activation of room temperature NO2 gas sensitivity of metal oxide semiconductors (MOS): blank and CdSe quantum dots (QDs) sensitized nanocrystallinematrixes ZnO, SnO2 and In2O3. Nanocrystalline metal oxides (MOx) ZnO, SnO2, In2O3 were synthesized by the precipitation method. Colloidal CdSe QDs were obtained by high temperature colloidal synthesis. Sensitization was effectuated by direct adsorption of CdSe QDs stabilized with oleic acid on MOx surface. The role of illumination consists in generation of electrons, which can be transferred into MOx conduction band, and holes that can recombine with the electrons previously trapped by the chemisorbed acceptor species and thus activate desorption of analyte molecules. Under green light illumination for blank SnO2 and In2O3 matrixes the indirect consequential mechanism for the generation of holes is proposed. Anothermechanismis realized in the presence of CdSe QDs. In this case the electron-hole pair is generated in the CdSe quantum dot. Sensor measurements demonstrated that synthesizedmaterials can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389164400005 Publication Date 2016-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 19 Open Access
Notes The work was financially supported by Russian Foundation for Basic Research grant no. 15-03-03026. Approved Most recent IF: 1.879
Call Number EMAT @ emat @ c:irua:138598 Serial 4321
Permanent link to this record
 

 
Author (up) Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V.
Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue Pages 189-195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000180368000029 Publication Date 2003-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Approved Most recent IF: 9.466; 2003 IF: 4.374
Call Number UA @ lucian @ c:irua:40348 Serial 123
Permanent link to this record
 

 
Author (up) d' Hondt, H.; Abakumov, A.M.; Hadermann, J.; Kalyuzhnaya, A.S.; Rozova, M.G.; Antipov, E.V.; Van Tendeloo, G.
Title Tetrahedral chain order in the Sr2Fe2O5 brownmillerite Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 22 Pages 7188-7194
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Sr2Fe2O5 brownmillerite has been investigated using electron diffraction and high resolution electron microscopy. The Sr2Fe2O5 structure demonstrates two-dimensional order: the tetrahedral chains with two mirror-related configurations (L and R) are arranged within the tetrahedral layers according to the −L−R−L−R− sequence, and the layers themselves are displaced with respect to each other over 1/2[111] or 1/2[11] vectors of the brownmillerite unit cell, resulting in different ordered stacking variants. A unified superspace model is constructed for ordered stacking sequences in brownmillerites based on the average brownmillerite structure with a = 5.5298(4)Å, b = 15.5875(12)Å, c = 5.6687(4)Å, and (3 + 1)-dimensional superspace group I2/m(0βγ)0s, q = βb* + γc*, 0 ≤ β ≤ 1/2, 0 ≤ γ ≤ 1.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000261002200039 Publication Date 2008-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 64 Open Access
Notes Iap Vi Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:72945 Serial 3511
Permanent link to this record
 

 
Author (up) d' Hondt, H.; Hadermann, J.; Abakumov, A.M.; Kalyuzhnaya, A.S.; Rozova, M.G.; Tsirlin, A.A.; Tan, H.; Verbeeck, J.; Antipov, E.V.; Van Tendeloo, G.
Title Synthesis, crystal structure and magnetic properties of the Sr2Al0.78Mn1.22O5.2 anion-deficient layered perovskite Type A1 Journal article
Year 2009 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 182 Issue 2 Pages 356-363
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000263124700022 Publication Date 2008-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 12 Open Access
Notes Iap Vi Approved Most recent IF: 2.299; 2009 IF: 2.340
Call Number UA @ lucian @ c:irua:72943 Serial 3450
Permanent link to this record
 

 
Author (up) Dachraoui, W.; Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Batuk, D.; Glazyrin, K.; McCammon, C.; Dubrovinsky, L.; Van Tendeloo, G.
Title Local oxygen-vacancy ordering and twinned octahedral tilting pattern in the Bi0.81Pb0.19FeO2.905 cubic perovskite Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 7 Pages 1378-1385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure of Bi0.81Pb0.19FeO2.905 was investigated on different length scales using a combination of electron diffraction, high-resolution scanning transmission electron microscopy, synchrotron X-ray powder diffraction, and Mössbauer spectroscopy. In the 80300 K temperature range, the average crystal structure of Bi0.81Pb0.19FeO2.905 is a cubic Pm3̅m perovskite with a = 3.95368(3) Å at T = 300 K. The (Pb2+, Bi3+) cations and O2 anions are randomly displaced along the 110 cubic directions, indicating the steric activity of the lone pair on the Pb2+ and Bi3+ cations and a tilting distortion of the perovskite framework. The charge imbalance induced by the heterovalent Bi3+ → Pb2+ substitution is compensated by the formation of oxygen vacancies preserving the trivalent state of the Fe cations. On a short scale, oxygen vacancies are located in anion-deficient (FeO1.25) layers that are approximately 6 perovskite unit cells apart and transform every sixth layer of the FeO6 octahedra into a layer with a 1:1 mixture of corner-sharing FeO4 tetrahedra and FeO5 tetragonal pyramids. The anion-deficient layers act as twin planes for the octahedral tilting pattern of adjacent perovskite blocks. They effectively randomize the octahedral tilting and prevent the cooperative distortion of the perovskite framework. The disorder in the anion sublattice impedes cooperative interactions of the local dipoles induced by the off-center displacements of the Pb and Bi cations. Magnetic susceptibility measurements evidence the antiferromagnetic ordering in Bi0.81Pb0.19FeO2.905 at low temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000302487500018 Publication Date 2012-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 27 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:97389 Serial 1829
Permanent link to this record
 

 
Author (up) De Sloovere, D.; Safari, M.; Elen, K.; D'Haen, J.; Drozhzhin, O.A.; Abakumov, A.M.; Simenas, M.; Banys, J.; Bekaert, J.; Partoens, B.; Van Bael, M.K.; Hardy, A.
Title Reduced Na2+xTi4O9 composite : a durable anode for sodium-ion batteries Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 23 Pages 8521-8527
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Sodium-ion batteries (SIBs) are potential cost-effective solutions for stationary energy storage applications. Unavailability of suitable anode materials, however, is one of the important barriers to the maturity of SIBs. Here, we report a Na2+xTi4O9/C composite as a promising anode candidate for SIBs with high capacity and cycling stability. This anode is characterized by a capacity of 124 mAh g(-1) (plus 11 mAh g(-1) contributed by carbon black), an average discharge potential of 0.9 V vs Na/Na+, a good rate capability and a high stability (89% capacity retention after 250 cycles at a rate of 1 degrees C). The mechanisms of sodium insertion/deinsertion and of the formation of Na2+xTi4O9/C are investigated with the aid of various ex/in situ characterization techniques. The in situ formed carbon is necessary for the formation of the reduced sodium titanate. This synthesis method may enable the convenient synthesis of other composites of crystalline phases with amorphous carbon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453489300014 Publication Date 2018-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access
Notes ; This work was supported by the FWO (Research Foundation Flanders, project G040116). O.A.D. and A.M.A. are grateful to the Russian Science Foundation for financial support (Grant 17-73-30006). The authors acknowledge Pieter Samyn for Raman spectroscopy, Fulya Ulu Okudur for preliminary TEM, Bart Ruttens for XRD, Hilde Pellaers for SEM, Tom Haeldermans for elemental analysis, and Karen Leyssen and Vera Meynen for physisorption measurements. ; Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:156235 Serial 5227
Permanent link to this record
 

 
Author (up) Dombrovski, E.N.; Serov, T.V.; Abakumov, A.M.; Ardashnikova, E.I.; Dolgikh, V.A.; Van Tendeloo, G.
Title The structural investigation of Ba4Bi3F17 Type A1 Journal article
Year 2004 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 177 Issue 1 Pages 312-318
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000188534800041 Publication Date 2003-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 9 Open Access
Notes Approved Most recent IF: 2.299; 2004 IF: 1.815
Call Number UA @ lucian @ c:irua:54717 Serial 3239
Permanent link to this record
 

 
Author (up) Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V.
Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 191 Issue 191 Pages 149-157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371143200018 Publication Date 2016-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 27 Open Access
Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798
Call Number c:irua:131911 Serial 4032
Permanent link to this record