Number of records found: 7465
 | 
Citations
 | 
   web
Moire superlattices at the topological insulator Bi2Te3”. Schouteden K, Li Z, Chen T, Song F, Partoens B, Van Haesendonck C, Park K, Scientific reports 6, 20278 (2016). http://doi.org/10.1038/srep20278
toggle visibility
Band structure quantization in nanometer sized ZnO clusters”. Schouteden K, Zeng Y-J, Lauwaet K, Romero CP, Goris B, Bals S, Van Tendeloo G, Lievens P, Van Haesendonck C, Nanoscale 5, 3757 (2013). http://doi.org/10.1039/c3nr33989k
toggle visibility
First-principles calculations of the mean inner Coulomb potential for sphalerite type II.VI semiconductors”. Schowalter M, Lamoen D, Kruse P, Gerthsen D, Rosenauer A, Applied Physics Letters 85, 4938 (2004). http://doi.org/10.1063/1.1823598
toggle visibility
Ab initio computation of the mean inner Coulomb potential of technological important semiconductors”. Schowalter M, Rosenauer A, Lamoen D, Kruse P, Gerthsen D, 1007, 233 (2005)
toggle visibility
Ab initio computation of the mean inner Coulomb potential of wurtzite-type semiconductors and gold”. Schowalter M, Rosenauer A, Lamoen D, Kruse P, Gerthsen D, Applied Physics Letters 88, Artn 232108 (2006). http://doi.org/10.1063/1.2210453
toggle visibility
Calculation of Debye-Waller temperature factors for GaAs”. Schowalter M, Rosenauer A, Titantah JT, Lamoen D, Springer proceedings in physics 120, 195 (2008)
toggle visibility
Computation and parametrization of the temperature dependence of Debye-Waller factors for group IV, III-V and II-VI semiconductors”. Schowalter M, Rosenauer A, Titantah JT, Lamoen D, Acta crystallographica: section A: foundations of crystallography 65, 5 (2009). http://doi.org/10.1107/S0108767308031437
toggle visibility
Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure”. Schowalter M, Rosenauer A, Titantah JT, Lamoen D, Acta crystallographica: section A: foundations of crystallography 65, 227 (2009). http://doi.org/10.1107/S0108767309004966
toggle visibility
Ab initio computation of the mean inner Coulomb potential of amorphous carbon structures”. Schowalter M, Titantah JT, Lamoen D, Kruse P, Applied physics letters 86, 112102 (2005). http://doi.org/10.1063/1.1885171
toggle visibility
Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography–Mass Spectrometry for Its Detection in Seized Samples”. Schram J, Parrilla M, Sleegers N, Samyn N, Bijvoets SM, Heerschop MWJ, van Nuijs ALN, De Wael K, Analytical Chemistry 92, 13485 (2020). http://doi.org/10.1021/acs.analchem.0c02810
toggle visibility
Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples”. Schram J, Parrilla M, Sleegers N, Van Durme F, van den Berg J, van Nuijs ALN, De Wael K, Drug Testing And Analysis 13, 1282 (2021). http://doi.org/10.1002/DTA.3018
toggle visibility
Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples”. Schram J, Parrilla M, Slosse A, Van Durme F, Åberg J, Björk K, Bijvoets SM, Sap S, Heerschop MWJ, De Wael K, Microchemical journal 179, 107518 (2022). http://doi.org/10.1016/J.MICROC.2022.107518
toggle visibility
Local conversion of redox inactive molecules into redox active ones : a formaldehyde based strategy for the electrochemical detection of illicit drugs containing primary and secondary amines”. Schram J, Thiruvottriyur Shanmugam S, Sleegers N, Florea A, Samyn N, van Nuijs ALN, De Wael K, Electrochimica Acta 367, 137515 (2021). http://doi.org/10.1016/J.ELECTACTA.2020.137515
toggle visibility
Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes”. Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Altantzis T, Bals S, Schotter J, ACS applied materials and interfaces 8, 8893 (2016). http://doi.org/10.1021/acsami.5b11925
toggle visibility
Advanced electron microscopy characterisation of important precipitation and ordering phenomena in shape memory systems”. Schryvers D, Shape memory and superelasticity 1, 78 (2015). http://doi.org/10.1007/s40830-015-0006-3
toggle visibility
Electron microscopy studies of martensite microstructures”. Schryvers D, Journal de physique: 4 C5, 109 (1997). http://doi.org/10.1051/jp4:1997517
toggle visibility
Martensitic and bainitic transformations in Ni-Al alloys”. Schryvers D, Journal de physique: 4 C2, 225 (1994)
toggle visibility
Martensitic and related transformations in Ni-Al alloys”. Schryvers D, Journal de physique: 4 T2 –, IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPAIN 5, 225 (1995). http://doi.org/10.1051/jp4:1995235
toggle visibility
Microtwin sequences in thermoelastic NixAl100-x martensite studied by conventional and high resolution transmission electron microscopy”. Schryvers D, Philosophical magazine: A: physics of condensed matter: defects and mechanical properties 68, 1017 (1993). http://doi.org/10.1080/01418619308219383
toggle visibility
SAED and HREM results suggest a NiTi B19' based superstructure for CuZr martensite”. Schryvers D, Journal de physique: colloques, suppléments 5, 1047 (1995). http://doi.org/10.1051/jp4/1995581047
toggle visibility
Lattice deformations at martensite-martensite interfaces in Ni-Al”. Schryvers D, Boullay P, Kohn R, Ball J, Journal de physique: 4 11, 23 (2001). http://doi.org/10.1051/jp4:2001804
toggle visibility
Martensitic transformations studied on nano- and microscopic length scales”. Schryvers D, Boullay P, Potapov P, Satto C, Festkörperprobleme 40, 375 (2000)
toggle visibility
Microstructures and interfaces in Ni-Al martensite: comparing HRTEM observations with continuum theories”. Schryvers D, Boullay P, Potapov PL, Kohn RV, Ball JM, International journal of solids and structures 39, 3543 (2002). http://doi.org/10.1016/S0020-7683(02)00167-1
toggle visibility
Recent EM investigations on nano-and micro-defect structures in SMAs”. Schryvers D, Cao S, Pourbabak, Shi H, Lu, Journal of alloys and compounds 577, S705 (2013). http://doi.org/10.1016/j.jallcom.2011.10.112
toggle visibility
Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials”. Schryvers D, Cao S, Tirry W, Idrissi H, Van Aert S, Science and technology of advanced materials 14, 014206 (2013). http://doi.org/10.1088/1468-6996/14/1/014206
toggle visibility
Electron microscopy and diffraction study of the composition dependency of the 3R microtwinned martensite in Ni-Al”. Schryvers D, de Saegher B, van Landuyt J, Materials research bulletin 26, 57 (1991)
toggle visibility
Unit cell determination in CuZr martensite by EM and X-ray diffraction”. Schryvers D, Firstov GS, Seo JW, van Humbeeck J, Koval YN, Scripta materialia 36, 1119 (1997)
toggle visibility
Internal calibration technique for HREM studies of nanoscale particles”. Schryvers D, Goessens C, Safran G, Toth L, Microscopy research and technique T2 –, JOINT MEETING OF DUTCH SOC FOR ELECTRON MICROSCOPY / BELGIAN SOC FOR, ELECTRON MICROSCOPY / BELGIAN SOC FOR CELL BIOLOGY, DEC 10-11, 1992, ANTWERP, BELGIUM 25, 185 (1993). http://doi.org/10.1002/jemt.1070250216
toggle visibility
Austenite and martensite microstructures in splat-cooled Ni-Al”. Schryvers D, Holland-Moritz D, Intermetallics 6, 427 (1998). http://doi.org/10.1016/S0966-9795(97)00091-5
toggle visibility
Martensitic transformations and microstructures in splat-cooled Ni-Al”. Schryvers D, Holland-Moritz D, Materials science and engineering: part A: structural materials: properties, microstructure and processing 273/275, 697 (1999). http://doi.org/10.1016/S0921-5093(99)00399-8
toggle visibility