|   | 
Details
   web
Records
Author (up) Müller-Caspary, K.; Duchamp, M.; Roesner, M.; Migunov, V.; Winkler, F.; Yang, H.; Huth, M.; Ritz, R.; Simson, M.; Ihle, S.; Soltau, H.; Wehling, T.; Dunin-Borkowski, R.E.; Van Aert, S.; Rosenauer, A.
Title Atomic-scale quantification of charge densities in two-dimensional materials Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 12 Pages 121408
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The charge density is among the most fundamental solid state properties determining bonding, electrical characteristics, and adsorption or catalysis at surfaces. While atomic-scale charge densities have as yet been retrieved by solid state theory, we demonstrate both charge density and electric field mapping across a mono-/bilayer boundary in 2D MoS2 by momentum-resolved scanning transmission electron microscopy. Based on consistency of the four-dimensional experimental data, statistical parameter estimation and dynamical electron scattering simulations using strain-relaxed supercells, we are able to identify an AA-type bilayer stacking and charge depletion at the Mo-terminated layer edge.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000445508200004 Publication Date 2018-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access OpenAccess
Notes ; K.M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (VH-NG-1317) within the framework of the Helmholtz Young Investigator Group moreSTEM at Forschungszentrum Julich, Germany. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153621 Serial 5078
Permanent link to this record
 

 
Author (up) Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Molecular states of two vertically coupled systems of classical charged particles confined by a Coulomb potential Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue Pages 035336,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000248500800111 Publication Date 2007-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69657 Serial 2184
Permanent link to this record
 

 
Author (up) Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 88 Pages 214502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a numerical tight-binding approach based on the Chebyshev–Bogoliubov–de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and nondimer atoms, being more pronounced for rhombohedral stacking. Even though the proximity effect in nondimer sites is enhanced when compared to single-layer graphene, we find that the supercurrent is suppressed. The spatial distribution of the supercurrent shows that for Bernal stacking the current flows only in the topmost layers while for rhombohedral stacking the current flows throughout the whole structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328569900004 Publication Date 2013-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number CMT @ cmt @ c:irua:128896 Serial 3962
Permanent link to this record
 

 
Author (up) Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Disordered graphene Josephson junctions Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 054506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349436500001 Publication Date 2015-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:129192 Serial 3961
Permanent link to this record
 

 
Author (up) Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134509-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390000006 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108469 Serial 3660
Permanent link to this record
 

 
Author (up) Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Tight-binding study of bilayer graphene Josephson junctions Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 18 Pages 184505-184507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient simulations of the tight-binding Bogoliubov-de-Gennes model, we solved self-consistently for the pair correlation and the Josephson current in a superconducting-bilayer graphene-superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short- and long-junction regimes. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single-layer graphene except at the Dirac point, where remarkable differences in the proximity effect are found, as well as a suppression of the superconducting current in the long-junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if the junction length is larger than the Fermi length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310840400005 Publication Date 2012-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:105149 Serial 3661
Permanent link to this record
 

 
Author (up) Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Tight-binding model for borophene and borophane Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 12 Pages 125424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000427983700004 Publication Date 2018-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 45 Open Access
Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987
Permanent link to this record
 

 
Author (up) Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Dirac nodal line in bilayer borophene : tight-binding model and low-energy effective Hamiltonian Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 11 Pages 115413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer hexagonal borophene, which is bound together through pillars, is a novel topological semimetal. Using density functional theory, we investigate its electronic band structure and show that it is a Dirac material which exhibits a nodal line. A tight-binding model was constructed based on the Slater-Koster approach, which accurately models the electronic spectrum. We constructed an effective four-band model Hamiltonian to describe the spectrum near the nodal line. This Hamiltonian can be used as a new platform to study the new properties of nodal line semimetals. We found that the nodal line is created by edge states and is very robust against perturbations and impurities. Breaking symmetries can split the nodal line, but cannot open a gap.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000443916200007 Publication Date 2018-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and the graphene FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153649UA @ admin @ c:irua:153649 Serial 5090
Permanent link to this record
 

 
Author (up) Nascimento, J.S.; da Costa, D.R.; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.
Title Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results are obtained for AA-and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that (i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges, exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in BLG QDs.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411077400008 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was financially supported by CNPq, FUNCAP, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146751 Serial 4788
Permanent link to this record
 

 
Author (up) Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 8 Pages 085110-085110,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300240100002 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97208 Serial 884
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Beheshtian, J.; Shayeganfar, F.; Singh, S.K.; Los, J.H.; Peeters, F.M.
Title Spiral graphone and one-sided fluorographene nanoribbons Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages 075448-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The instability of a free-standing one-sided hydrogenated/fluorinated graphene nanoribbon, i.e., graphone/fluorographene, is studied using ab initio, semiempirical, and large-scale molecular dynamics simulations. Free-standing semi-infinite armchairlike hydrogenated/fluorinated graphene (AC-GH/AC-GF) and boatlike hydrogenated/fluorinated graphene (B-GH/B-GF) (nanoribbons which are periodic along the zigzag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GH and B-GF are energetically more favorable than spiral AC-GH and AC-GF which is opposite to the double-sided flat hydrogenated/fluorinated graphene, i.e., graphane/fluorographene. We found that the packed, spiral structures exhibit an unexpected localized highest occupied molecular orbital and lowest occupied molecular orbital at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least T = 1000 K within our simulation time of 1 ns. DOI: 10.1103/PhysRevB.87.075448
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315481800005 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; We thank A. Sadeghi, M. R. Ejtehadi, and J. Amini for their useful comments. This work is supported by the ESF EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). M.N.-A. is supported by a EU-Marie Curie IIF fellowship program Grant No. 299855. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107654 Serial 3106
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Covaci, L.; Peeters, F.M.
Title Nanoengineered nonuniform strain in graphene using nanopillars Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 4 Pages 041405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars. We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306313900001 Publication Date 2012-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100765 Serial 2255
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Peeters, F.M.
Title Graphene nanoribbons subjected to axial stress Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 8 Pages 085432-085432,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281065100007 Publication Date 2010-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 92 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84583 Serial 1373
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Peeters, F.M.
Title Lattice thermal properties of graphane : thermal contraction, roughness, and heat capacity Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 23 Pages 235437-235437,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations, we determine the roughness and the thermal properties of a suspended graphane sheet. As compared to graphene, we found that (i) hydrogenated graphene has a larger thermal contraction, (ii) the roughness exponent at room temperature is smaller, i.e., ≃ 1.0 versus ≃ 1.2 for graphene, (iii) the wavelengths of the induced ripples in graphane cover a wide range corresponding to length scales in the range 30125 Å at room temperature, and (iv) the heat capacity of graphane is estimated to be 29.32±0.23 J/mol K, which is 14.8% larger than that for graphene, i.e., 24.98±0.14 J/mol K. Above 1500 K, we found that graphane buckles when its edges are supported in the x-y plane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292253400011 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90921 Serial 1803
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Peeters, F.M.
Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 23 Pages 11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279336000001 Publication Date 2010-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83857 Serial 1820
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Peeters, F.M.
Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 23 Pages 235421,1-235421,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278710800003 Publication Date 2010-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 108 Open Access
Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83093 Serial 2259
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Peeters, F.M.
Title Strain-engineered graphene through a nanostructured substrate : 1 : deformations Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195445-195445,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations we investigate the morphological properties of graphene deposited on top of a nanostructured substrate. Sinusoidally corrugated surfaces, steps, elongated trenches, one-dimensional and cubic barriers, spherical bubbles, Gaussian bumps, and Gaussian depressions are considered as support structures for graphene. The graphene-substrate interaction is governed by van der Waals forces and the profile of the graphene layer is determined by minimizing the energy using molecular dynamics simulations. Based on the obtained optimum configurations, we found that (i) for graphene placed over sinusoidally corrugated substrates with corrugation wavelengths longer than 2 nm, the graphene sheet follows the substrate pattern while for supported graphene it is always suspended across the peaks of the substrate, (ii) the conformation of graphene to the substrate topography is enhanced when increasing the energy parameter in the van der Waals model, (iii) the adhesion of graphene into the trenches depends on the width of the trench and on the graphene's orientation, i. e., in contrast to a small-width (3 nm) nanoribbon with armchair edges, the one with zigzag edges follows the substrate profile, (iv) atomic-scale graphene follows a Gaussian bump substrate but not the substrate with a Gaussian depression, and (v) the adhesion energy due to van der Waals interaction varies in the range [0.1-0.4] J/m(2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304394800012 Publication Date 2012-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 62 Open Access
Notes ; We thank L. Covaci and S. Costamagna for valuable comments. We acknowledge M. Zarenia, M. R. Masir and D. Nasr for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98942 Serial 3166
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Peeters, F.M.
Title Strain-engineered graphene through a nanostructured substrate : 2 : pseudomagnetic fields Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195446-195446,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The strain-induced pseudomagnetic field in supported graphene deposited on top of a nanostructured substrate is investigated by using atomistic simulations. A step, an elongated trench, a one-dimensional barrier, a spherical bubble, a Gaussian bump, and a Gaussian depression are considered as support structures for graphene. From the obtained optimum configurations we found very strong induced pseudomagnetic fields which can reach up to similar to 1000 T due to the strain-induced deformations in the supported graphene. Different magnetic confinements with controllable geometries are found by tuning the pattern of the substrate. The resulting induced magnetic fields for graphene on top of a step, barrier, and trench are calculated. In contrast to the step and trench the middle part of graphene on top of a barrier has zero pseudomagnetic field. This study provides a theoretical background for designing magnetic structures in graphene by nanostructuring substrates. We found that altering the radial symmetry of the deformation changes the sixfold symmetry of the induced pseudomagnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304394800013 Publication Date 2012-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98943 Serial 3167
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Rashidi, R.; Nair, R.R.; Neilson, D.; Peeters, F.M.
Title Electric-field-induced emergent electrical connectivity in graphene oxide Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Understanding the appearance of local electrical connectivity in liquid filled layered graphene oxide subjected to an external electric field is important to design electrically controlled smart permeable devices and also to gain insight into the physics behind electrical effects on confined water permeation. Motivated by recent experiments [K. G. Zhou et al. Nature (London) 559, 236 (2018)], we introduce a new model with random percolating paths for electrical connectivity in micron thick water filled layered graphene oxide, which mimics parallel resistors connected across the top and bottom electrodes. We find that a strong nonuniform radial electric field of the order similar to 10-50 mV/nm can be induced between layers depending on the current flow through the formed conducting paths. The maxima of the induced fields are not necessarily close to the electrodes and may be localized in the middle region of the layered material. The emergence of electrical connectivity and the associated electrical effects have a strong influence on the surrounding fluid in terms of ionization and wetting which subsequently determines the permeation properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461960100001 Publication Date 2019-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158534 Serial 5206
Permanent link to this record
 

 
Author (up) Neek-Amal, M.; Xu, P.; Qi, D.; Thibado, P.M.; Nyakiti, L.O.; Wheeler, V.D.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Peeters, F.M.
Title Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 6 Pages 064101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Twisted graphene layers produce a moire pattern (MP) structure with a predetermined wavelength for a given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theory (DFT) due to the large supercell. Here, within elasticity theory, we define the MP structure as the minimum-energy configuration, thereby leaving the height amplitude as the only unknown parameter. The latter is determined from DFT calculations for AB-and AA-stacked bilayer graphene in order to eliminate all fitting parameters. Excellent agreement with scanning tunneling microscopy results across multiple substrates is reported as a function of twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339995800001 Publication Date 2014-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoctoral Fellowship No. 299855. P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. L.O.N. acknowledges the support of the American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the US Naval Research Laboratory is supported by the Office of Naval Research. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118774 Serial 1991
Permanent link to this record
 

 
Author (up) Neek-Amal, M; Peeters, F.M.
Title Partially hydrogenated and fluorinated graphene : structure, roughness, and negative thermal expansion Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 155430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural properties of partially hydrogenated and fluorinated graphene with different percentages of H/F atoms are investigated using molecular dynamics simulations based on reactive force field (ReaxFF) potentials. We found that the roughness of graphene varies with the percentage (p) of H or F and in both cases is maximal around p = 50%. Similar results were obtained for partially oxidized graphene. The two-dimensional area size of partially fluorinated and hydrogenated graphene exhibits a local minimum around p = 35% coverage. The lattice thermal contraction in partially functionalized graphene is found to be one order of magnitude larger than that of fully covered graphene. We also show that the armchair structure for graphene oxide (similar to the structure of fully hydrogenated and fluorinated graphene) is unstable. Our results show that the structure of partially functionalized graphene changes nontrivially with the C : H and C : F ratio as well as with temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000363294100005 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:129448 Serial 4221
Permanent link to this record
 

 
Author (up) Nga, T.T.N.; Peeters, F.M.
Title Influence of electron-electron interaction on the cyclotron resonance spectrum of magnetic quantum dots containing few electrons Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 7 Pages 075419-075419,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The configuration interaction method is used to obtain the magneto-optical absorption spectrum of a few-electron (Ne=1,2,,5) quantum dot containing a single magnetic ion. We find that the IR spectrum (the position, the number, and the oscillator strength of the cyclotron resonance peaks) depends on the strength of the Coulomb interaction, the number of electrons, and the position of the magnetic ion. We find that the Kohn theorem is no longer valid as a consequence of the electron-spin-magnetic-ion-spin-exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287584600011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by FWO-Vl (Flemish Science Foundation), the Brazilian science foundation CNPq, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88912 Serial 1620
Permanent link to this record
 

 
Author (up) Nguten, N.T.T.; Peeters, F.M.
Title Many-body effects in the cyclotron resonance of a magnetic dot Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 11 Pages 115335,1-115335,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Intraband cyclotron resonance (CR) transitions of a two-electron quantum dot containing a single magnetic ion is investigated for different Coulomb interaction strengths and different positions of the magnetic ion. In contrast to the usual parabolic quantum dots where CR is independent of the number of electrons, we found here that due to the presence of the magnetic ion Kohn's theorem no longer holds and CR is different for systems with different number of electrons and different effective electron-electron Coulomb interaction strength. Many-body effects result in shifts in the transition energies and change the number of CR lines. The position of the magnetic ion inside the quantum dot affects the structure of the CR spectrum by changing the position and the number of crossings and anticrossings in the transition energies and oscillator strengths.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383200110 Publication Date 2009-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79228 Serial 1941
Permanent link to this record
 

 
Author (up) Nguyen, H.T.T.; Obeid, M.M.; Bafekry, A.; Idrees, M.; Vu, T.V.; Phuc, H., V; Hieu, N.N.; Le Hoa, T.; Amin, B.; Nguyen, C., V
Title Interfacial characteristics, Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 7 Pages 075414-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional graphene-based van der Waals heterostructures have received considerable interest because of their intriguing characteristics compared with the constituent single-layer two-dimensional materials. Here, we investigate the interfacial characteristics, Schottky contact, and optical performance of graphene/Ga2SSe van der Waals (vdW) heterostructure using first-principles calculations. The effects of stacking patterns, electric gating, and interlayer coupling on the interfacial properties of graphene/Ga2SSe heterostructures are also examined. Our results demonstrate that the Dirac cone of graphene is well preserved at the F point in all stacking patterns due to the weak vdW interactions, which keep the heterostructures feasible such that they can be obtained in further experiments. Moreover, depending on the stacking patterns, a small band gap of about 13-17 meV opens in graphene and has a high carrier mobility, indicating that the graphene/Ga2SSe heterostructures are potential candidates for future high-speed nanoelectronic applications. In the ground state, the graphene/Ga2SSe heterostructures form an n-type Schottky contact. The transformation from an n-type to a p-type Schottky contact or to an Ohmic contact can be forced by electric gating or by varying the interlayer coupling. Our findings could provide physical guidance for designing controllable Schottky nanodevices with high electronic and optical performances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000557294500006 Publication Date 2020-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access
Notes ; This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.01-2019.05. The authors declare that there are no conflicts of interest regarding the publication of this paper. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:171163 Serial 6549
Permanent link to this record
 

 
Author (up) Nguyen, N.T.T.; Peeters, F.M.
Title Correlated many-electron states in a quantum dot containing a single magnetic impurity Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue Pages 045315,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000248540000068 Publication Date 2007-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69659 Serial 520
Permanent link to this record
 

 
Author (up) Nguyen, N.T.T.; Peeters, F.M.
Title Cyclotron resonance of a magnetic quantum dot Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 24 Pages 245311,1-245311,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum of a one-electron quantum dot doped with a single magnetic ion is studied in the presence of an external magnetic field. The allowed cyclotron resonance (CR) transitions are obtained together with their oscillator strength as a function of the magnetic field, the position of the magnetic ion, and the quantum dot confinement strength. With increasing magnetic field a ferromagnetic-antiferromagnetic transition is found, which results in clear signatures in the CR absorption. It leads to discontinuities in the transition energies and the oscillator strengths and to an increase in the number of allowed transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262246400055 Publication Date 2008-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76011 Serial 602
Permanent link to this record
 

 
Author (up) Nguyen, N.T.T.; Peeters, F.M.
Title Magnetic field dependence of the many-electron statis in a magnetic quantum dot: the ferromagnetic-antiferromagnetic transition Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue 4 Pages 045321,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000258190400078 Publication Date 2008-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70560 Serial 1870
Permanent link to this record
 

 
Author (up) Nicholas, R.J.; Sasaki, S.; Miura, N.; Peeters, F.M.; Shi, J.M.; Hai, G.Q.; Devreese, J.T.; Lawless, M.J.; Ashenford, D.E.; Lunn, B.
Title Interband magnetooptical studies of resonant polaron coupling in CdTe/Cd1-xMnxTe quantum-wells Type A1 Journal article
Year 1994 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 50 Issue 11 Pages 7596-7601
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract Magnetoreflectivity measurements of the 1s and 2s exciton energies in a CdTe/Cd1-xMnxTe superlattice have been made in magnetic fields up to 45 T, showing the resonant polaron coupling of electrons to LO phonons. Strong reflectivity features are seen for both the 1s and 2s excitons, which show a strong field-dependent spin splitting due to the dilute magnetic barriers. At B-z=0, the 2s exciton feature is observed lying 18 meV above the Is state, and is shifted upward in energy by the magnetic fields. No resonant behavior occurs when the 2s state passes through the LO-phonon energy of 21 meV, but at higher fields of around 20 T, the resonances for both spin states (sigma(+/-)) of the 2s exciton broaden and show a strong anticrossing behavior. These experiments are shown to be in excellent agreement with a theoretical treatment which includes the resonant polaron coupling of the electrons alone. Both experiment and theory demonstrate an extremely strong resonant splitting of the 2s exciton states of approximately 11 meV, which is over 50% of the LO-phonon energy. The dominance of single-particle polaron coupling is attributed to the relative sizes of the polaron (35 Angstrom A) and the exciton (50 Angstrom A) radius.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1994PJ43700045 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99837 Serial 1687
Permanent link to this record
 

 
Author (up) Nicholas, R.J.; Watts, M.; Howell, D.F.; Peeters, F.M.; Wu, X.G.; Devreese, J.T.; van Bockstal, L.; Herlach, F.; Langerak, C.J.G.M.; Singleton, J.; Chevy, A.
Title Cyclotron resonance of both magnetopolaron branches for polar and neutral optic phonon coupling in the layer compound InSe Type A1 Journal article
Year 1992 Publication Pysical review: B Abbreviated Journal Phys Rev B
Volume 45 Issue Pages 12144
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992HV74700089 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 21 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:2906 Serial 603
Permanent link to this record