|   | 
Details
   web
Records
Author (up) Sóti, V.; Lenaerts, S.; Cornet, I.
Title Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes Type A1 Journal article
Year 2018 Publication Journal of biotechnology Abbreviated Journal J Biotechnol
Volume 270 Issue 270 Pages 70-76
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 10831087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible if the enzymes are produced at the most optimistic variable cost and either the activity of the immobilized catalyst or the recovery efficiency is further increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427556400009 Publication Date 2018-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1656 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 6 Open Access
Notes ; This research is financed by the University of Antwerp [project number 15 FA100 002]. ; Approved Most recent IF: 2.599
Call Number UA @ admin @ c:irua:149006 Serial 5974
Permanent link to this record
 

 
Author (up) Spacova, I.; Ahannach, S.; Breynaert, A.; Erreygers, I.; Wittouck, S.; Bron, P.A.; Van Beeck, W.; Eilers, T.; Alloul, A.; Blansaer, N.; Vlaeminck, S.E.; Hermans, N.; Lebeer, S.
Title Spontaneous riboflavin-overproducing Limosilactobacillus reuteri for biofortification of fermented foods Type A1 Journal article
Year 2022 Publication Frontiers in Nutrition Abbreviated Journal
Volume 9 Issue Pages 916607-916619
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Riboflavin-producing lactic acid bacteria represent a promising and cost-effective strategy for food biofortification, but production levels are typically insufficient to support daily human requirements. In this study, we describe the novel human isolate Limosilactobacillus reuteri AMBV339 as a strong food biofortification candidate. This strain shows a high natural riboflavin (vitamin B2) overproduction of 18.36 mu g/ml, biomass production up to 6 x 10(10) colony-forming units/ml (in the typical range of model lactobacilli), and pH-lowering capacities to a pH as low as 4.03 in common plant-based (coconut, soy, and oat) and cow milk beverages when cultured up to 72 h at 37 degrees C. These properties were especially pronounced in coconut beverage and butter milk fermentations, and were sustained in co-culture with the model starter Streptococcus thermophilus. Furthermore, L. reuteri AMBV339 grown in laboratory media or in a coconut beverage survived in gastric juice and in a simulated gastrointestinal dialysis model with colon phase (GIDM-colon system) inoculated with fecal material from a healthy volunteer. Passive transport of L. reuteri AMBV339-produced riboflavin occurred in the small intestinal and colon stage of the GIDM system, and active transport via intestinal epithelial Caco-2 monolayers was also demonstrated. L. reuteri AMBV339 did not cause fecal microbiome perturbations in the GIDM-colon system and inhibited enteric bacterial pathogens in vitro. Taken together, our data suggests that L. reuteri AMBV339 represents a promising candidate to provide riboflavin fortification of plant-based and dairy foods, and has a high application potential in the human gastrointestinal tract.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814856600001 Publication Date 2022-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-861x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:189011 Serial 7211
Permanent link to this record
 

 
Author (up) Spanoghe, J.
Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages vi, 207 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-741-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188233 Serial 7198
Permanent link to this record
 

 
Author (up) Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakarika, M.; Papini, G.; Alloul, A.; Spiller, M.; Derycke, V.; Stragier, L.; Verstraete, H.; Fauconnier, K.; Verstraete, W.; Haesaert, G.; Vlaeminck, S.E.
Title Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer Type A1 Journal article
Year 2020 Publication Microbial biotechnology Abbreviated Journal Microb. Biotechnol.
Volume Issue Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis (‘Spirulina’) and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as biobased fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000563539700001 Publication Date 2020-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited Open Access
Notes The authors would like to kindly acknowledge (i) the MIP i‐Cleantech Flanders (Milieu‐innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support, (ii) the DOCPRO4 project ‘PurpleTech’, funded by the BOF (Bijzonder onderzoeksfonds; Special research fund) from the University of Antwerp for financially supporting J.S., (iii) all MicroNOD partners, including the University of Antwerp, Ghent University, AgrAqua, Greenyard Horticulture and Avecom; and (iv) all steering committee members, including Greenyard Frozen, Agristo, AVBS, Vlakwa, het Innovatiesteunpunt, VCM and OVAM. Approved Most recent IF: 5.7; 2020 IF: NA
Call Number DuEL @ duel @c:irua:167595 Serial 6357
Permanent link to this record
 

 
Author (up) Spanoghe, J.; Ost, K.J.; Van Beeck, W.; Vermeir, P.; Lebeer, S.; Vlaeminck, S.E.
Title Purple bacteria screening for photoautohydrogenotrophic food production : are new H₂-fed isolates faster and nutritionally better than photoheterotrophically obtained reference species? Type A1 Journal article
Year 2022 Publication New biotechnology Abbreviated Journal New Biotechnol
Volume 72 Issue Pages 38-47
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photoautohydrogenotrophic enrichments of wastewater treatment microbiomes were performed to obtain hypothetically high-potential specialist species for biotechnological applications. From these enrichment cultures, ten photoautohydrogenotrophic species were isolated: six Rhodopseudomonas species, three Rubrivivax members and Rhodobacter blasticus. The performance of these isolates was compared to three commonly studied, and originally photoheterotrophically enriched species (Rhodopseudomonas palustris, Rhodobacter capsulatus and Rhodobacter sphaeroides), designated as reference species. Repeated subcultivations were applied to improve the initial poor performance of the isolates (acclimation effect), which resulted in increases in both maximum growth rate and protein productivity. However, the maximum growth rate of the reference species remained 3–7 times higher compared to the isolates (0.42–0.84 d−1 at 28 °C), while protein productivities remained 1.5–1.7 times higher. This indicated that H2-based enrichment did not result in photoautohydrogenotrophic specialists, suggesting that the reference species are more suitable for intensified biomass and protein production. On the other hand, the isolates were able to provide equally high protein quality profiles as the references species, providing full dietary essential amino acid matches for human food. Lastly, the effect of metabolic carbon/electron switching (back and forth between auto- to heterotrophic conditions) initially boosted µmax when returning to photoautohydrogenotrophic conditions. However, the switch negatively impacted lag phase, protein productivities and pigment contents. In the case of protein productivity, the acquired acclimation was partially lost with decreases of up to 44 % and 40 % respectively for isolates and reference species. Finally, the three reference species, and specifically Rh. capsulatus, remained the most suitable candidate(s) for further biotechnological development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861078800005 Publication Date 2022-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.4
Call Number UA @ admin @ c:irua:190188 Serial 7199
Permanent link to this record
 

 
Author (up) Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E.
Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol
Volume 337 Issue Pages 125364
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694862500007 Publication Date 2021-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.651 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.651
Call Number UA @ admin @ c:irua:178752 Serial 8243
Permanent link to this record
 

 
Author (up) Spiller, M.
Title Measuring adaptive capacity of urban wastewater infrastructure : change impact and change propagation Type A1 Journal article
Year 2017 Publication The science of the total environment Abbreviated Journal
Volume 601-602 Issue Pages 571-579
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The ability of urban wastewater systems to adapt and transform as a response to change is an integral part of sustainable development. This requires technology and infrastructure that can be adapted to new operational challenges. In this study the adaptive capacity of urban wastewater systems is evaluated by assessing the interdependencies between system components. In interdependent and therefore tightly coupled systems, changes to one systems component will require alteration elsewhere in the system, therefore impairing the capacity of these systems to be changed. The aim of this paper is to develop a methodology to evaluate the adaptive capacity of urban wastewater systems by assessing how change drivers and innovation affect existing wastewater technology and infrastructure. The methodology comprises 7 steps and applies a change impact table and a design structure matrix that are completed by experts during workshops. Change impact tables quantify where change drivers, such as energy neutrality and resource recovery, require innovation in a system. The design structure matrix is a tool to quantify emerging changes that are a result of the innovation. The method is applied for the change driver of energy neutrality and shown for two innovations: a decentralised upflow anaerobic sludge blanket reactor followed by an anammox process and a conventional activated sludge treatment with enhanced chemical precipitation and high temperature-high pressure hydrolysis. The results show that the energy neutrality of wastewater systems can be address by either innovation in the decentralised or centralised treatment. The quantification of the emerging changes for both innovations indicates that the decentralised treatment is more disruptive, or in other words, the system needs to undergo more adaptation. It is concluded that the change impact and change propagation method can be used to characterise and quantify the technological or infrastructural transformations. In addition, it provides insight into the stakeholders affected by change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406294900057 Publication Date 2017-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:143926 Serial 8212
Permanent link to this record
 

 
Author (up) Spiller, M.; Moretti, M.; De Paepe, J.; Vlaeminck, S.E.
Title Environmental and economic sustainability of the nitrogen recovery paradigm : evidence from a structured literature review Type A1 Journal article
Year 2022 Publication Resources, conservation and recycling Abbreviated Journal Resour Conserv Recy
Volume 184 Issue Pages 106406-106413
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Our economy drives on reactive nitrogen (Nr); while Nr emissions to the environment surpass the planetary boundary. Increasingly, it is advocated to recover Nr contained in waste streams and to reuse it ‘directly’ in the agri-food chain. Alternatively, Nr in waste streams may be removed as N2 and refixed via the Haber-Bosch process in an ‘indirect’ reuse loop. As a systematic sustainability analysis of ‘direct’ Nr reuse and its comparison to the ‘indirect’ reuse loop is lacking, this structured review aimed to analyze literature determining the environmental and economic sustainability of Nr recovery technologies. Bibliometric records were queried from 2000 to 2020 using Boolean search strings, and manual text coding. In total, 63 studies were selected for the review. Results suggest that ‘direct’ Nr reuse using Nr recovery technologies is the preferred paradigm as the majority of studies concluded that it is sustainable or that it can be sustainable depending on technological assumptions and other scenario variables. Only 17 studies compared the ‘direct’ with the ‘indirect’ Nr reuse route, therefore a system perspective in Nr recovery sustainability assessments should be more widely adopted. Furthermore, Nr reuse should also be analyzed in the context of a ‘new Nr economy’ that relies on decentralized Nr production from renewable energy. It is also recommended that on-par technology readiness level comparisons should be carried out, making use of technology development and technology learning methodologies. Finally, by-products of Nr recovery are important to be accounted for as they are reducing the environmental burdens through avoided impacts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804938100001 Publication Date 2022-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.2
Call Number UA @ admin @ c:irua:188873 Serial 7156
Permanent link to this record
 

 
Author (up) Spiller, M.; Muys, M.; Papini, G.; Sakarika, M.; Buyle, M.; Vlaeminck, S.E.
Title Environmental impact of microbial protein from potato wastewater as feed ingredient : comparative consequential life cycle assessment of three production systems and soybean meal Type A1 Journal article
Year 2020 Publication Water Research Abbreviated Journal Water Res
Volume 171 Issue Pages 115406
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8–88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8–12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000514748900032 Publication Date 2019-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.8 Times cited 10 Open Access
Notes ; The authors would like to thank (i) the MIP i-Cleantech Flanders (Milieu innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD; 150360) for financial support, (ii) the Research Foundation Flanders (FWO-Vlaanderen) for supporting Gustavo Papini with a doctoral fellowship (strategic basic research; 1S38917N), (iii) Research Foundation Flanders (FWO-Vlaanderen) for supporting Matthias Buyle with a post-doctoral fellowship (Postdoctoral Fellow junior; 1207520N), and (iv) Bo Weidema, Abbas Alloul, Yixing Sui and Tim Van Winckel for their insightful discussions. ; Approved Most recent IF: 12.8; 2020 IF: 6.942
Call Number UA @ admin @ c:irua:164944 Serial 6509
Permanent link to this record
 

 
Author (up) Spooren, J.; Kim, E.; Horckmans, L.; Broos, K.; Nielsen, P.; Quaghebeur, M.
Title In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal
Volume 303 Issue Pages 359-368
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel heap leaching method was investigated for selective removal of chromium (Cr) and-vanadium (V) from ferrochromium (FeCr) and stainless steel (SS) slags. In particular, alkaline oxidative heap leaching was simulated on lab-scale by batch and column leaching tests. The results show a selective leaching of Cr (11-19%) and V (7.0-7.5%) after 64 days of column leaching, with a very low dissolution (<2.2% (FeCr slag) and <0.15% (SS slag)) of matrix elements (e.g. Al, Fe, Si, Mg, Ca), when NaOCl is applied as oxidation agent and NaOH as alkaline agent. Furthermore, the used leaching liquor is reactive for a longer period of time, indicating that circulation of leaching liquor could be possible. Finally, the experimental results were fed into a first-order model which predicts that Cr will continue to leach from the tested slags for 4-5 years at a chosen infiltration rate of 73,000 l/(y m(2)). (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383522800036 Publication Date 2016-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:137104 Serial 8074
Permanent link to this record
 

 
Author (up) Sui, Y.
Title Producing nutritional protein with Dunaliella microalgae : technological and economic optimization Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 140 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract ​In this thesis, microalga Dunaliella salina is highlighted as a novel source of protein to sustain the human needs. As demonstrated in this thesis, the biochemical composition of D. salina is not fixed, and can be substantially influenced by internal and external conditions. In order to comply with the human requirement of protein, various important factors affecting the protein quantity and quality of D. salina have been evaluated in this thesis for an optimized production strategy. All tested parameters, namely salinity, pH, light regimes (continuous light and light/dark cycle), light intensity, nutrient levels and growth phases can contribute to significant variations of protein content and essential amino acid (EAA) level in D. salina. Ultimately, D. salina is capable of producing high amount of superior quality protein, complying with the FAO reference for human consumption. Even better, such protein of superior quality can be accompanied by unique β-carotene accumulation in D. salina, a pigment with anti-oxidant pro-vitamin A effect. In the end, according to the techno-economic analysis (TEA), it is economically feasible to produce D. salina biomass for human nutrition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-630-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164002 Serial 8420
Permanent link to this record
 

 
Author (up) Sui, Y.; Alloul, A.; Muys, M.; Makyeme, M.; Coppens, J.; Verstraete, W.; Vlaeminck, S.E.
Title Invigorating the renaissance of single cell protein : safe opportunities for nutrient recovery and reuse as feed ingredient Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 12 p. T2 - WEF/IWA Nutrient Removal and Recovery C
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151128 Serial 8130
Permanent link to this record
 

 
Author (up) Sui, Y.; Jiang, Y.; Moretti, M.; Vlaeminck, S.E.
Title Harvesting time and biomass composition affect the economics of microalgae production Type A1 Journal article
Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
Volume 259 Issue Pages 120782-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)
Abstract Cost simulations provide a strong tool to render the production of microalgae economically viable. This study evaluated the unexplored effect of harvesting time and the corresponding microalgal biomass composition on the overall production cost, under both continuous light and light/dark regime using techno-economic analysis (TEA). At the same time, the TEA gives evidence that a novel product “proteinaceous salt” from Dunaliella microalgae production is a promising high-value product for commercialization with profitability. The optimum production scenario is to employ natural light/dark regime and harvest microalgal biomass around late exponential phase, obtaining the minimum production cost of 11 €/kg and a profitable minimum selling price (MSP) of 14.4 €/kg for the “proteinaceous salt”. For further optimization of the production, increasing microalgal biomass concentration is the most effective way to reduce the total production cost and increase the profits of microalgae products.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000530695500009 Publication Date 2020-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited 5 Open Access
Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD). ; Approved Most recent IF: 11.1; 2020 IF: 5.715
Call Number UA @ admin @ c:irua:166802 Serial 6531
Permanent link to this record
 

 
Author (up) Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E.
Title Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
Year 2019 Publication Bioresource technology Abbreviated Journal
Volume 287 Issue Pages 121398
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469414500008 Publication Date 2019-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:159661 Serial 7916
Permanent link to this record
 

 
Author (up) Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E.
Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
Year 2019 Publication Bioresource technology Abbreviated Journal
Volume 275 Issue Pages 145-152
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456405000018 Publication Date 2018-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:155981 Serial 8173
Permanent link to this record
 

 
Author (up) Sui, Y.; Vlaeminck, S.E.
Title Dunaliella microalgae for nutritional protein : an undervalued asset Type A1 Journal article
Year 2020 Publication Trends in biotechnology : regular edition Abbreviated Journal
Volume 38 Issue 1 Pages 10-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract β-carotene production using Dunaliella microalgae is established, yet their potential as a source of protein for food and feed applications appears to be overlooked. The rich protein content and nutritional tunability of Dunaliella make these algae intriguing sources of sustainable protein. Thus, it is of societal interest to exploit these promising proteinaceous Dunaliella traits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503376700004 Publication Date 2019-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1879-3096; 0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.3 Times cited 2 Open Access
Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Clean-tech Flanders (Milieu-innovatieplatform; Environment Innovation Platform) project Microbial Nutrients on Demand (MicroNOD). Dr Michele Moretti from University of Antwerp is acknowledged for proofreading the manuscript. ; Approved Most recent IF: 17.3; 2020 IF: 11.126
Call Number UA @ admin @ c:irua:164903 Serial 6495
Permanent link to this record
 

 
Author (up) Sui, Y.; Vlaeminck, S.E.
Title Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina Type A1 Journal article
Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 4 Pages 1032-1040
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract BACKGROUND Microalgae have long been adopted for use as human food, animal feed and high‐value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and pH levels to optimize its protein productivity. RESULTS The biomass protein content followed an increasedecrease pattern throughout the growth phases, with a maximum in the exponential phase (6080% over ash‐free dry weight). Adversely, the biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a and 0.5% chlorophyll b over ash‐free dry weight). Among the tested conditions (13 mol L−1 salinity, pH 7.59.5), the highest protein productivity (43.5 mg L−1 day−1) was achieved at 2 mol L−1 salinity and pH 7.5 during the exponential phase, which surpassed others by 1697%. Additionally, table salts were tested to be equivalent and cost‐efficient salt sources for the growth medium. CONCLUSION This study highlighted the suitability of D. salina as a protein source, providing guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at larger scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461237300004 Publication Date 2018-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157955 Serial 7849
Permanent link to this record
 

 
Author (up) Sui, Y.; Vlaeminck, S.E.
Title Exploring Dunaliella salina as single cell protein (SCP) : the influence of light/dark regime on the growth and protein synthesis Type A2 Journal article
Year 2017 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 82 Issue 1 Pages 6-11
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Single cell protein (SCP), or originally named microbial protein, is the edible microbial biomass derived from e.g. microalgae, bacteria and fungi, which can be used as protein sources replacing conventional protein sources for animal feed or human food such as fishmeal and soybean (Anupama & Ravindra 2000). SCP presents great potential as protein supplement to alleviate the problem of food scarcity in the future (Nasseri et al. 2011). In general, microalgae as SCP contains above 50% protein over dry weight and specifically for the marine microalgae Dunaliella salina the amount stays around 57% (Becker 2007). Commercially the most common system for Dunaliella sp. production is the outdoor open pond, thus the microalgal cells are subjected to a natural light/dark cycle (Hosseini Tafreshi & Shariati 2009). Being photo-autotrophic microorganisms, the lack of light energy sources is a risk leading to night biomass loss (Ogbonna & Tanaka 1996). On the other hand, for some microalgae species cell division occurs primarily during the night suggesting its night protein synthesis (Cuhel et al. 1984). As a consequence, day and night metabolisms of microalgae introduced by light/dark cycles potentially will have big impacts on the biomass development, both in growth and biochemical composition. In this study, the effect of the light/dark cycle on the growth and protein synthesis of Dunaliella salina was explored in comparison with continuous light cultivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151148 Serial 7950
Permanent link to this record
 

 
Author (up) Tang, T.; Boenne, W.; Desmet, N.; Seuntjens, P.; Bronders, J.; van Griensven, A.
Title Quantification and characterization of glyphosate use and loss in a residential area Type A1 Journal article
Year 2015 Publication The science of the total environment Abbreviated Journal
Volume 517 Issue Pages 207-214
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 mu g/L and 5.8 mu g/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 mu g/L), but are above the EU drinking water standard (0.1 mu g/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352663800020 Publication Date 2015-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125992 Serial 8431
Permanent link to this record
 

 
Author (up) Tang, T.; Stamm, C.; van Griensven, A.; Seuntjens, P.; Bronders, J.
Title Hysteresis and parent-metabolite analyses unravel characteristic pesticide transport mechanisms in a mixed land use catchment Type A1 Journal article
Year 2017 Publication Water research Abbreviated Journal
Volume 124 Issue Pages 663-672
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km(2)) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies.(C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412251500065 Publication Date 2017-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:146661 Serial 8048
Permanent link to this record
 

 
Author (up) Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y.
Title Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide Type A1 Journal article
Year 2019 Publication Current Opinion in Environmental Sustainability Abbreviated Journal
Volume 36 Issue Pages 39-48
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Global water quality (WQ) modeling is an emerging field. In this article, we identify the missing linkages between global and basin/local-scale WQ models, and discuss the possibilities to fill these gaps. We argue that WQ models need stronger linkages across spatial scales. This would help to identify effective scale-specific WQ management options and contribute to future development of global WQ models. Two directions are proposed to improve the linkages: nested multiscale WQ modeling towards enhanced water management, and development of next-generation global WQ models based-on basin/local-scale mechanistic understanding. We highlight the need for better collaboration among WQ modelers and policy-makers in order to deliver responsive water policies and management strategies across scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460234600006 Publication Date 2018-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-3435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158643 Serial 7568
Permanent link to this record
 

 
Author (up) Tavkhelidze, I.; Caratelli, D.; Gielis, J.; Ricci, P.E.; Rogava, M.; Transirico, M.
Title On a geometric model of bodies with “complex” configuration and some movements Type H1 Book chapter
Year 2017 Publication Abbreviated Journal
Volume 2 Issue Pages 129-158 T2 - Modeling in mathematics : proceedings
Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Aim of this chapter is analytical representation of one wide class of geometric figures (lines, surfaces and bodies) and their complicated displacements. The accurate estimation of physical characteristics (such as volume, surface area, length, or other specific parameters) relevant to human organs is of fundamental importance in medicine. One central idea of this article is, in this respect, to provide a general methodology for the evaluation, as a function of time, of the volume and center of gravity featured by moving of one class of bodies used of describe different human organs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000442076400010 Publication Date 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6239-260-1; 978-94-6239-261-8; 2543-0300; 978-94-6239-260-1 Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144552 Serial 8326
Permanent link to this record
 

 
Author (up) Tavkhelidze, I.; Cassisa, C.; Gielis, J.; Ricci, P.E.
Title About “bulky” links, generated by generalized Möbius Listing's bodies GML3n Type A1 Journal article
Year 2013 Publication Matematica e applicazioni : atti della Accademia nazionale dei Lincei Abbreviated Journal
Volume 24 Issue 1 Pages 11-38
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the present paper we consider the “bulky knots'' and ”bulky links'', which appear after cutting a Generalized Möbius Listing's GMLn3 body (whose radial cross section is a plane 3-symmetric figure with three vertices) along different Generalized Möbius Listing's surfaces GMLn2 situated in it. This article is aimed to investigate the number and geometric structure of the independent objects appearing after such a cutting process of GMLn3 bodies. In most cases we are able to count the indices of the resulting mathematical objects according to the known tabulation for Knots and Links of small complexity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316567700002 Publication Date 2013-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-6357 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107174 Serial 7405
Permanent link to this record
 

 
Author (up) Tavkhelidze, I.; Gielis, J.
Title The process of cutting GMLmn bodies with dm-knives Type A3 Journal article
Year 2018 Publication Sn – 1512-0066 Abbreviated Journal
Volume 32 Issue Pages 67-70
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:159971 Serial 8417
Permanent link to this record
 

 
Author (up) Tavkhelidze, I.; Gielis, J.
Title Structure of the dm knives and process of cutting of GML(man) or GRT(man) bodies Type A3 Journal article
Year 2019 Publication Sn – 1512-0066 Abbreviated Journal
Volume 33 Issue Pages
Keywords A3 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164897 Serial 8588
Permanent link to this record
 

 
Author (up) Tavkhelidze, I.; Gielis, J.; Pinelas, S.
Title About some methods of analytic representation and classification of a wide set of geometric figures with “complex” configuration Type A3 Journal article
Year 2020 Publication Sn – 1512-0066 Abbreviated Journal
Volume 34 Issue Pages 81-84
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174475 Serial 7406
Permanent link to this record
 

 
Author (up) Tavkhelidze, I.; Gielis, J.; Pinelas, S.
Title About some methods of analytic representation and classification of a wide set of geometric figures with “complex” configuration Type H1 Book chapter
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 347-359 T2 - Differential and difference equations
Keywords H1 Book chapter; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-56322-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174479 Serial 7407
Permanent link to this record
 

 
Author (up) Tian, F.; Wang, Y.; Sandhu, H.S.; Gielis, J.; Shi, P.
Title Comparison of seed morphology of two ginkgo cultivars Type A1 Journal article
Year 2020 Publication Journal Of Forestry Research Abbreviated Journal J Forestry Res
Volume 31 Issue 3 Pages 751-758
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Ginkgo biloba L. is a precious relic tree species with important economic value. Seeds, as a vital reproductive organ of plants, can be used to distinguish cultivars of the species. We chose 400 seeds from two cultivars of ginkgo (Fozhi and Maling; 200 seeds for each cultivar) as the study material and used the Gielis equation to fit the projected shape of these seeds. The coefficients of variation (CV) in root mean squared errors (RMSE) obtained from the fitted data were used to compare the level of inter-cultivar variations in seed shape. We also used the covariance analysis to compare the allometric relationships between seed weights and projected areas of these two cultivars. The Gielis equation fitted well the seed shapes of two ginkgo cultivars. The lower CV in RMSE of cultivar Fozhi than Maling indicated a less symmetrical seed shape in the latter than the former. The bootstrap percentile method showed that the seed shape differences between the two cultivars were significant. However, there was no significant difference in the exponents between the seed weights and the projected areas of these two cultivars. Overall, the significant differences in shapes between the seeds of two ginkgo cultivars were well explained by the Gielis equation; this model can be further extended to compare morphological differences in other ginkgo cultivars, and even for plant seeds or animal eggs that have similar oval shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000529367600005 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1007-662x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 3; 2020 IF: 0.774
Call Number UA @ admin @ c:irua:154987 Serial 6474
Permanent link to this record
 

 
Author (up) Timmis, K.; de Vos, W.M.; Luis Ramos, J.; Vlaeminck, S.E.; Prieto, A.; Danchin, A.; Verstraete, W.; de Lorenzo, V.; Lee, S.Y.; Brussow, H.; Timmis, J.K.; Singh, B.K.
Title The contribution of microbial biotechnology to sustainable development goals Type Editorial
Year 2017 Publication Microbial biotechnology Abbreviated Journal
Volume 10 Issue 5 Pages 984-987
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411491300001 Publication Date 2017-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:146778 Serial 8653
Permanent link to this record
 

 
Author (up) Tirez, K.; Vanhoof, C.; Bronders, J.; Seuntjens, P.; Bleux, N.; Berghmans, P.; De Brucker, N.; Vanhaecke, F.
Title Do ICP-MS based methods fulfill the EU monitoring requirements for the determination of elements in our environment? Type A1 Journal article
Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal
Volume 17 Issue 12 Pages 2034-2050
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Undoubtedly, the most important advance in the environmental regulatory monitoring of elements of the last decade is the widespread introduction of ICP-mass spectrometry (ICP-MS) due to standards developed by the European Committee for Standardization. The versatility of ICP-MS units as a tool for the determination of major, minor and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Ti, V and Zn) in surface water, groundwater, river sediment, topsoil, subsoil, fine particulates and atmospheric deposition is illustrated in this paper. Ranges of background concentrations for major, minor and trace elements obtained from a regional case study (Flanders, Belgium) are summarized for all of these environmental compartments and discussed in the context of a harmonized implementation of European regulatory monitoring requirements. The results were derived from monitoring programs in support of EU environmental quality directives and were based on a selection of (non-polluted) background locations. Because of the availability of ICP-MS instruments nowadays, it can be argued that the main hindrance for meeting the European environmental monitoring requirements is no longer the technical feasibility of analysis at these concentration levels, but rather (i) potential contamination during sampling and analysis, (ii) too limited implementation of quality control programs, validating the routinely applied methods (including sampling and low level verification) and (iii) lack of harmonization in reporting of the chemical environmental status between the individual member states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000365915600005 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130316 Serial 7821
Permanent link to this record