|   | 
Details
   web
Records
Author (up) Ullah, S.; Hussain, A.; Syed, W.A.; Saqlain, M.A.; Ahmad, I.; Leenaerts, O.; Karim, A.
Title Band-gap tuning of graphene by Be doping and Be, B co-doping : a DFT study Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages 55762-55773
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles density functional theory (DFT) calculations were carried out to investigate the structural and electronic properties of beryllium (Be) doped and Be and boron (B) co-doped graphene systems. We observed that not only the concentration of impurity atoms is important to tune the band-gap to some desired level, but also the specific substitution sites play a key role. In our system, which consists of 32 atoms, a maximum of 4Be and, in the co-doped state, 2Be and 3B atom substitutions are investigated. Both dopants are electron deficient relative to C atoms and cause the Fermi level to shift downward (p-type doping). A maximum band gap of 1.44 eV can be achieved on incorporation of 4Be atoms. The introduction of Be is more sensitive in terms of geometry and stability than B. However, in opening the energy gap, Be is more effective than B and N (nitrogen). Our results offer the possibility to modify the band-gap of graphene sufficiently for utilization in diverse electronic device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357803200018 Publication Date 2015-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 33 Open Access
Notes ; ; Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:127167 Serial 216
Permanent link to this record
 

 
Author (up) Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue 19 Pages 193101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000402319200036 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:144279 Serial 4690
Permanent link to this record
 

 
Author (up) Zarenia, M.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Substrate-induced chiral states in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 8 Pages 085451
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Unidirectional chiral states are predicted in single layer graphene which originate from the breaking of the sublattice symmetry due to an asymmetric mass potential. The latter can be created experimentally using boron-nitride (BN) substrates with a line defect (B-B or N-N) that changes the induced mass potential in graphene. Solving the Dirac-Weyl equation, the obtained energy spectrum is compared with the one calculated using ab initio density functional calculations. We found that these one-dimensional chiral states are very robust and they can even exist in the presence of a small gap between the mass regions. In the latter case additional bound states are found that are topologically different from those chiral states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308005600015 Publication Date 2012-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the European Science Foundation (ESF) under the EUROCORES Program: EuroGRAPHENE (project CONGRAN). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101100 Serial 3347
Permanent link to this record