|   | 
Details
   web
Records
Author (down) Neek-Amal, M.; Peeters, F.M.
Title Lattice thermal properties of graphane : thermal contraction, roughness, and heat capacity Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 23 Pages 235437-235437,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations, we determine the roughness and the thermal properties of a suspended graphane sheet. As compared to graphene, we found that (i) hydrogenated graphene has a larger thermal contraction, (ii) the roughness exponent at room temperature is smaller, i.e., ≃ 1.0 versus ≃ 1.2 for graphene, (iii) the wavelengths of the induced ripples in graphane cover a wide range corresponding to length scales in the range 30125 Å at room temperature, and (iv) the heat capacity of graphane is estimated to be 29.32±0.23 J/mol K, which is 14.8% larger than that for graphene, i.e., 24.98±0.14 J/mol K. Above 1500 K, we found that graphane buckles when its edges are supported in the x-y plane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292253400011 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90921 Serial 1803
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Peeters, F.M.
Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 23 Pages 11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279336000001 Publication Date 2010-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83857 Serial 1820
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Peeters, F.M.
Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 23 Pages 235421,1-235421,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278710800003 Publication Date 2010-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 108 Open Access
Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83093 Serial 2259
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Peeters, F.M.
Title Strain-engineered graphene through a nanostructured substrate : 1 : deformations Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195445-195445,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations we investigate the morphological properties of graphene deposited on top of a nanostructured substrate. Sinusoidally corrugated surfaces, steps, elongated trenches, one-dimensional and cubic barriers, spherical bubbles, Gaussian bumps, and Gaussian depressions are considered as support structures for graphene. The graphene-substrate interaction is governed by van der Waals forces and the profile of the graphene layer is determined by minimizing the energy using molecular dynamics simulations. Based on the obtained optimum configurations, we found that (i) for graphene placed over sinusoidally corrugated substrates with corrugation wavelengths longer than 2 nm, the graphene sheet follows the substrate pattern while for supported graphene it is always suspended across the peaks of the substrate, (ii) the conformation of graphene to the substrate topography is enhanced when increasing the energy parameter in the van der Waals model, (iii) the adhesion of graphene into the trenches depends on the width of the trench and on the graphene's orientation, i. e., in contrast to a small-width (3 nm) nanoribbon with armchair edges, the one with zigzag edges follows the substrate profile, (iv) atomic-scale graphene follows a Gaussian bump substrate but not the substrate with a Gaussian depression, and (v) the adhesion energy due to van der Waals interaction varies in the range [0.1-0.4] J/m(2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304394800012 Publication Date 2012-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 62 Open Access
Notes ; We thank L. Covaci and S. Costamagna for valuable comments. We acknowledge M. Zarenia, M. R. Masir and D. Nasr for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98942 Serial 3166
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Peeters, F.M.
Title Strain-engineered graphene through a nanostructured substrate : 2 : pseudomagnetic fields Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195446-195446,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The strain-induced pseudomagnetic field in supported graphene deposited on top of a nanostructured substrate is investigated by using atomistic simulations. A step, an elongated trench, a one-dimensional barrier, a spherical bubble, a Gaussian bump, and a Gaussian depression are considered as support structures for graphene. From the obtained optimum configurations we found very strong induced pseudomagnetic fields which can reach up to similar to 1000 T due to the strain-induced deformations in the supported graphene. Different magnetic confinements with controllable geometries are found by tuning the pattern of the substrate. The resulting induced magnetic fields for graphene on top of a step, barrier, and trench are calculated. In contrast to the step and trench the middle part of graphene on top of a barrier has zero pseudomagnetic field. This study provides a theoretical background for designing magnetic structures in graphene by nanostructuring substrates. We found that altering the radial symmetry of the deformation changes the sixfold symmetry of the induced pseudomagnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304394800013 Publication Date 2012-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98943 Serial 3167
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Covaci, L.; Peeters, F.M.
Title Nanoengineered nonuniform strain in graphene using nanopillars Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 4 Pages 041405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars. We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306313900001 Publication Date 2012-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100765 Serial 2255
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Beheshtian, J.; Shayeganfar, F.; Singh, S.K.; Los, J.H.; Peeters, F.M.
Title Spiral graphone and one-sided fluorographene nanoribbons Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages 075448-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The instability of a free-standing one-sided hydrogenated/fluorinated graphene nanoribbon, i.e., graphone/fluorographene, is studied using ab initio, semiempirical, and large-scale molecular dynamics simulations. Free-standing semi-infinite armchairlike hydrogenated/fluorinated graphene (AC-GH/AC-GF) and boatlike hydrogenated/fluorinated graphene (B-GH/B-GF) (nanoribbons which are periodic along the zigzag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GH and B-GF are energetically more favorable than spiral AC-GH and AC-GF which is opposite to the double-sided flat hydrogenated/fluorinated graphene, i.e., graphane/fluorographene. We found that the packed, spiral structures exhibit an unexpected localized highest occupied molecular orbital and lowest occupied molecular orbital at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least T = 1000 K within our simulation time of 1 ns. DOI: 10.1103/PhysRevB.87.075448
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315481800005 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; We thank A. Sadeghi, M. R. Ejtehadi, and J. Amini for their useful comments. This work is supported by the ESF EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). M.N.-A. is supported by a EU-Marie Curie IIF fellowship program Grant No. 299855. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107654 Serial 3106
Permanent link to this record
 

 
Author (down) Neek-Amal, M.; Beheshtian, J.; Sadeghi, A.; Michel, K.H.; Peeters, F.M.
Title Boron nitride mono layer : a strain-tunable nanosensor Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 25 Pages 13261-13267
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000321236400041 Publication Date 2013-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 38 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Funding of the Flemish government. AS. would like to thank the Universiteit Antwerpen for its hospitality. ; Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:109829 Serial 249
Permanent link to this record
 

 
Author (down) Nazar, N.D.; Vazifehshenas, T.; Ebrahimi, M.R.; Peeters, F.M.
Title Strong anisotropic optical properties of 8-Pmmn borophene : a many-body perturbation study Type A1 Journal article
Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 23 Issue 30 Pages 16417-16422
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles many-body perturbation theory, we investigate the optical properties of 8-Pmmn borophene at two levels of approximations; the GW method considering only the electron-electron interaction and the GW in combination with the Bethe-Salpeter equation including electron-hole coupling. The band structure exhibits anisotropic Dirac cones with semimetallic character. The optical absorption spectra are obtained for different light polarizations and we predict strong optical absorbance anisotropy. The absorption peaks undergo a global redshift when the electron-hole interaction is taken into account due to the formation of bound excitons which have an anisotropic excitonic wave function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000677722700001 Publication Date 2021-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.123 Times cited 4 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:180385 Serial 7022
Permanent link to this record
 

 
Author (down) Navulla, A.; Tsirlin, A.A.; Abakumov, A.M.; Shpanchenko, R.V.; Zhang, H.; Dikarev, E.V.
Title Fluorinated heterometallic \beta-diketonates as volatile single-source precursors for the synthesis of low-valent mixed-metal fluorides Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 4 Pages 692-694
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexafluoroacetylacetonates that contain lead and divalent first-row transition metals, PbM(hfac)4 (M = Ni (1), Co (2), Mn (3), Fe (4), and Zn (5)), have been synthesized. Their heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating−bridging fashion. Compounds 1−5 are highly volatile and decompose below 350 °C. Fluorinated heterometallic β-diketonates have been used for the first time as volatile single-source precursors for the preparation of mixed-metal fluorides. Complex fluorides of composition Pb2MF6 have been obtained by decomposition of 1−5 in a two-zone furnace under low-pressure nitrogen flow. Lead−transition metal fluorides conform to orthorhombically distorted Aurivillius-type structure with layers of corner-sharing [MF6] octahedra separated by α-PbO-type (Pb2F2) blocks. Pb2NiF6 and Pb2CoF6 were found to exhibit magnetic ordering below 80 and 43 K, respectively. The ordering is antiferromagnetic, with a weak, uncompensated moment due to the canting of spins. The Pb2MF6 fluorides represent a new class of prospective magnetoelectric materials combining transition metals and lone-pair main-group cations.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000287295300015 Publication Date 2010-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 28 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:88820 Serial 1236
Permanent link to this record
 

 
Author (down) Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 8 Pages 085110-085110,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300240100002 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97208 Serial 884
Permanent link to this record
 

 
Author (down) Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Surface correlation effects in two-band strongly correlated slabs Type A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 7 Pages 075601-75609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/ center to center/ surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000330719500009 Publication Date 2014-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. One of us (LC) is a postdoctoral fellow of the FWO-Vl. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115723 Serial 3395
Permanent link to this record
 

 
Author (down) Nasirpouri, F.; Engbarth, M.A.; Bending, S.J.; Peter, L.M.; Knittel, A.; Fangohr, H.; Milošević, M.V.
Title Three-dimensional ferromagnetic architectures with multiple metastable states Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 22 Pages 222506,1-222506,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate controllable dual-bath electrodeposition of nickel on architecture-tunable three-dimensional (3D) silver microcrystals. Magnetic hysteresis loops of individual highly faceted Ag-Ni core-shell elements reveal magnetization reversal that comprises multiple sharp steps corresponding to different stable magnetic states. Finite-element micromagnetic simulations on smaller systems show several jumps during magnetization reversal which correspond to transitions between different magnetic vortex states. Structures of this type could be realizations of an advanced magnetic data storage architecture whereby each element represents one multibit, storing a combination of several conventional bits depending on the overall number of possible magnetic states associated with the 3D core-shell shape.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000291405700044 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by EPSRC in the U.K. under Grant Nos. EP/E039944/1 and EP/E040063/1, DYNAMAG project (EU FP7/2007-2013 Grant No. 233552), and FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:90008 Serial 3652
Permanent link to this record
 

 
Author (down) Naseri, M.; Bafekry, A.; Faraji, M.; Hoat, D.M.; Fadlallah, M.M.; Ghergherehchi, M.; Sabbaghi, N.; Gogova, D.
Title Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting Type A1 Journal article
Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 23 Issue 21 Pages 12226-12232
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Pure hydrogen production via water splitting is an ideal strategy for producing clean and sustainable energy. Two-dimensional (2D) cadmium chalcogenide single-layers with a tetragonal crystal structure, namely Tetra-CdX (X = S, Se, and Te) monolayers, are theoretically predicted by means of density functional theory (DFT). Their structural stability and electronic and optical properties are investigated. We find that Tetra-CdX single-layers are thermodynamically stable. Their stability decreases as we go down the 6A group in the periodic table, i.e., from X = S to Se, and Te which also means that the electronegativity decreases. All considered novel monolayers are indirect band gap semiconductors. Using the HSE06 functional the electronic band gaps of CdS, CdSe, and CdTe monolayers are predicted to be 3.10 eV, 2.97 eV, and 2.90 eV, respectively. The impact of mechanical strain on the physical properties was studied, which indicates that compressive strain increases the band gap and tensile strain decreases the band gap. The optical properties of the Tetra-CdX monolayers show the ability of these monolayers to absorb visible light. Due to the suitable band gaps and band edge positions of Tetra-CdX, these newly discovered 2D materials are promising for photocatalytic water splitting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000651904600001 Publication Date 2021-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:178378 Serial 7041
Permanent link to this record
 

 
Author (down) Nascimento, J.S.; da Costa, D.R.; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.
Title Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results are obtained for AA-and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that (i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges, exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in BLG QDs.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411077400008 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was financially supported by CNPq, FUNCAP, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146751 Serial 4788
Permanent link to this record
 

 
Author (down) Napolsky, P.S.; Drozhzhin, O.A.; Istomin, S.Y.; Kazakov, S.M.; Antipov, E.V.; Galeeva, A.V.; Gippius, A.A.; Svensson, G.; Abakumov, A.M.; Van Tendeloo, G.
Title Structure and high-temperature properties of the (Sr,Ca,Y)(Co,Mn)O3-y perovskites – perspective cathode materials for IT-SOFC Type A1 Journal article
Year 2012 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 192 Issue Pages 186-194
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Oxygen deficient perovskites Sr0.75Y0.25Co1-xMnxO3-y, x=0.5 and 0.75, were prepared by using the citrate route at 1373-1573 K for 48 h. The cubic Pm-3m perovskite structure for x=0.5 was confirmed by electron diffraction study and refined using neutron powder diffraction (NPD) data. For x=0.75, the superstructure corresponding to a=root 2 x a(per), b=2 x a(per), c=root 2 x a(per) (a(0)b(-)b(-) tilt system, space group Imma) was revealed by electron diffraction. The solid solution Sr0.75-xCaxY0.25Co0.25Mn0.75O3-y, 0.1 <= x <= 0.6 and compound Ca0.75Y0.25Mn0.85Co0.15O2.92 were prepared in air at 1573 K for 48 h. The crystal structure of Ca0.75Y0.25Mn0.85Co0.15O2.92 was refined using NPD data (S.G. Pnma, a=5.36595(4), b=7.5091(6), c=5.2992(4) angstrom, R-p=0.057, R-wp=0.056, chi(2)=4.26). High-temperature thermal expansion properties of the prepared compounds were studied in air using both dilatometry and high-temperature X-ray powder diffraction data (HTXRPD). They expanding non-linearly at 298-1073 K due to the loss of oxygen at high temperatures. Calculated average thermal expansion coefficients (TECs) for Sr0.75Y0.25Co1-xMnxO3-y, x=0.5, 0.75 and Ca0.75Y0.25Mn0.85Co0.15O2.92(1) are 15.5, 15.1, and 13.8 ppm K-1, respectively. Anisotropy of the thermal expansion along different unit cell axes was observed for Sr0.15Ca0.6Y0.25Co0.25Mn0.75O3-y, and Ca0.75Y0.25Mn0.85Co0.15O2.92. Conductivity of Sr0.75Y0.25Co1-xMnxO3-y, x=0.5 and 0.75 increases with the temperature reaching 110 S/cm for x=0.5 and 44 S/cm for x=0.75 at 1173 K. Samples of Sr0.75-xCaxY0.25Co0.25Mn0.75O3-y, 0.1 <= y <= 0.6 were found to be n-type conductors at room temperature with the similar temperature dependence of the conductivity and demonstrated the increase of the sigma value from similar to 1 to similar to 50 S/cm as the temperature increases from 300 to 1173 K. Their conductivity is described in terms of the small polaron charge transport with the activation energy (E-p) increasing from 340 to 430 meV with an increase of the calcium content from x=0 to x=0.6. (C) 2012 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000307028300030 Publication Date 2012-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access
Notes Approved Most recent IF: 2.299; 2012 IF: 2.040
Call Number UA @ lucian @ c:irua:101119 Serial 3279
Permanent link to this record
 

 
Author (down) Napierala, C.; Lepoittevin, C.; Edely, M.; Sauques, L.; Giovanelli, F.; Laffez, P.; Van Tendeloo, G.
Title Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors Type A1 Journal article
Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 183 Issue 7 Pages 1663-1669
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Rare earth nickelates exhibit a reversible metalsemiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3+. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metalinsulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metalinsulator transition at 60 °C in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000279711200028 Publication Date 2010-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 3 Open Access
Notes Approved Most recent IF: 2.299; 2010 IF: 2.261
Call Number UA @ lucian @ c:irua:83679 Serial 2156
Permanent link to this record
 

 
Author (down) Nakhaee, M.; Yagmurcukardes, M.; Ketabi, S.A.; Peeters, F.M.
Title Single-layer structures of a100- and b010-Gallenene : a tight-binding approach Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 28 Pages 15798-15804
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a(100)- and b(010)-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a(100)-Gallenene can be very well explained with an orthogonal basis set, while for b(010)-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b(010)-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a(100)-Gallenene nanoribbons are metallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476603700057 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 14 Open Access
Notes ; This work is supported by the Methusalem program of the Flemish government and the FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M. Y.). M. N. is partially supported by BFO (Uantwerpen). ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161881 Serial 5427
Permanent link to this record
 

 
Author (down) Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Tight-binding model for borophene and borophane Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 12 Pages 125424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000427983700004 Publication Date 2018-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 45 Open Access
Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987
Permanent link to this record
 

 
Author (down) Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Dirac nodal line in bilayer borophene : tight-binding model and low-energy effective Hamiltonian Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 11 Pages 115413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer hexagonal borophene, which is bound together through pillars, is a novel topological semimetal. Using density functional theory, we investigate its electronic band structure and show that it is a Dirac material which exhibits a nodal line. A tight-binding model was constructed based on the Slater-Koster approach, which accurately models the electronic spectrum. We constructed an effective four-band model Hamiltonian to describe the spectrum near the nodal line. This Hamiltonian can be used as a new platform to study the new properties of nodal line semimetals. We found that the nodal line is created by edge states and is very robust against perturbations and impurities. Breaking symmetries can split the nodal line, but cannot open a gap.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000443916200007 Publication Date 2018-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and the graphene FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153649UA @ admin @ c:irua:153649 Serial 5090
Permanent link to this record
 

 
Author (down) Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian Type A1 Journal article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput Phys Commun
Volume 254 Issue Pages 107379-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present the Tight-Binding Studio (TB Studio) software package that calculates the different parameters of a tight-binding Hamiltonian from a set of Bloch energy bands obtained from first principle theories such as density functional theory, Hartree-Fock calculations or semi-empirical band-structure theory. This will be helpful for scientists who are interested in studying electronic and optical properties of structures using Green's function theory within the tight-binding approximation. TB Studio is a cross-platform application written in C++ with a graphical user interface design that is user-friendly and easy to work with. This software is powered by Linear Algebra Package C interface library for solving the eigenvalue problems and the standard high performance OpenGL graphic library for real time plotting. TB Studio and its examples together with the tutorials are available for download from tight-binding.com. Program summary Program Title: Tight-Binding Studio Program Files doi:http://dx.doi.org/10.17632/j6x5mwzm2d.1 Licensing provisions: LGPL Programming language: C++ External routines: BLAS, LAPACK, LAPACKE, wxWidgets, OpenGL, MathGL Nature of problem: Obtaining Tight-Binding Hamiltonian from a set of Bloch energy bands obtained from first-principles calculations. Solution method: Starting from the simplified LCAO method, a tight-binding model in the two-center approximation is constructed. The Slater and Koster (SK) approach is used to calculate the parameters of the TB Hamiltonian. By using non-linear fitting approaches the optimal values of the SK parameters are obtained such that the TB energy eigenvalues are as close as possible to those from first-principles calculations. We obtain the expression for the Hamiltonian and the overlap matrix elements between the different orbitals of the different atoms in an orthogonal or non-orthogonal basis set. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541251200030 Publication Date 2020-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.3 Times cited 27 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government, Belgium and M. Nakhaee was supported by a BOF-fellowship (UAntwerpen), Belgium. ; Approved Most recent IF: 6.3; 2020 IF: 3.936
Call Number UA @ admin @ c:irua:170149 Serial 6630
Permanent link to this record
 

 
Author (down) Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Machine learning approach to constructing tight binding models for solids with application to BiTeCl Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 21 Pages 215107
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000597311900001 Publication Date 2020-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 10 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and was partially supported by BOF (UAntwerpen Grant Reference No. ADPERS/BAP/RS/ 2019). We would like to thank one of the anonymous referees for assisting us in making the paper more accessible to the reader. ; Approved Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:174380 Serial 6691
Permanent link to this record
 

 
Author (down) Nakhaee, M.
Title Tight-binding model for two-dimensional materials Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 139 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract abstract not available
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:166134 Serial 8671
Permanent link to this record
 

 
Author (down) Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
Year 2023 Publication Electrochemistry Abbreviated Journal
Volume 91 Issue 9 Pages 097003-97007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082818000001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200340 Serial 9009
Permanent link to this record
 

 
Author (down) Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode (Supporting Information) Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079191200001 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200933 Serial 9010
Permanent link to this record
 

 
Author (down) Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J.
Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 12790-12798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382015100012 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 26 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:137188 Serial 4395
Permanent link to this record
 

 
Author (down) Naderi Mahdei, K.; Esfahani, S.M.J.; Lebailly, P.; Dogot, T.; Van Passel, S.; Azadi, H.
Title Environmental impact assessment and efficiency of cotton : the case of Northeast Iran Type A1 Journal article
Year 2022 Publication Environment, development and sustainability Abbreviated Journal
Volume Issue Pages 1-21
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Cotton is one of the important crops that play an important role in creating a livelihood for rural people in many parts of Iran. Cotton production necessitates a large amount of resources (e.g., fossil energy and agrochemicals, all of which have the potential to damage the environment in various ways). The purpose of the current study was to evaluate the environmental effects of cotton production in the South Khorasan Province of Iran. For this purpose, life cycle assessment (LCA) and data envelopment analysis (DEA) techniques have been applied to investigate the environmental impacts of cotton production. LCA is a practical method to evaluate the environment on the product flow, in which all aspects of the product life cycle are examined by a comprehensive approach. Furthermore, combining the LCA method with other managerial strategies such as DEA could allow researchers to provide decision-makers with more practical and interpretable data. The findings of the efficiency test showed that the average technical efficiency, pure technical efficiency, and scale efficiency were 0.81, 0.92, and 0.87, respectively. Respiratory inorganics (i.e., respiratory effects resulting from winter smog caused by emissions of dust, sulfur, and nitrogen oxides to air) posed the greatest environmental burden in cotton production, followed by non-renewable energy, carcinogens, and global warming. In addition, the highest effects were on human health, and then, on resources and climate change. Energy, on-system pollution, and waste played a crucial role in the environmental impacts of cotton processing. This study suggests improving farmers' knowledge toward the optimum application of chemical fertilizers, or their substitution with green fertilizers, which reduces the environmental effect of growing cotton in the area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000826851400001 Publication Date 2022-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-585x; 1573-2975 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.9
Call Number UA @ admin @ c:irua:189630 Serial 7356
Permanent link to this record
 

 
Author (down) Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A.
Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal
Volume 8 Issue 10 Pages 801
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451174100057 Publication Date 2018-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156335 Serial 7842
Permanent link to this record
 

 
Author (down) N. Gauquelin, E. Benckiser, M. K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.-U. Habermeier, U. Kaiser, B. Keimer, and G. A. Botton
Title Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices Type A1 Journal Article
Year 2014 Publication Physical Review B Abbreviated Journal
Volume 90 Issue Pages 195140
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The interfacial atomic structure of a metallic LaNiO3/LaAlO3 superlattice grown on a LaSrAlO4 substrate was

investigated using a combination of atomically resolved electron energy loss spectroscopy (EELS) at the Al K,

Al L2,3, Sr L2,3, Ni L2,3, La M4,5, and O K edges as well as hybridization mapping of selected features of the O

K-edge fine structure.We observe an additional La1−xSrxAl1−yNiyO3 layer at the substrate-superlattice interface,

possibly linked to diffusion of Al and Sr into the growing film or a surface reconstruction due to Sr segregation.

The roughness of the LaNiO3/LaAlO3 interfaces is found to be on average around one pseudocubic unit cell. The

O K-edge EELS spectra revealed reduced spectral weight of the prepeak derived from Ni-O hybridized states in

the LaNiO3 layers. We rule out oxygen nonstoichiometry of the LaNiO3 layers and discuss changes in the Ni-O

hybridization due to heterostructuring as possible origin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345467000003 Publication Date 2014-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 17 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4544
Permanent link to this record