toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Zhong, R.; Peng, L.; de Clippel, F.; Gommes, C.; Goderis, B.; Ke, X.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis Type A1 Journal article
  Year 2015 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 7 Issue 7 Pages 3047-3058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of ordered mesoporous silica-carbon composites was explored by employing TEOS and sucrose as the silica and carbon precursor respectively, and the triblock copolymer F127 as a structure-directing agent via an evaporation-induced self-assembly (EISA) process. It is demonstrated that the synthesis procedures allow for control of the textural properties and final composition of these silica-carbon nanocomposites via adjustment of the effective SiO2/C weight ratio. Characterization by SAXS, N-2 physisorption, HRTEM, TGA, and C-13 and Si-29 solid-state MAS NMR show a 2D hexagonal mesostructure with uniform large pore size ranging from 5.2 to 7.6nm, comprising of separate carbon phases in a continuous silica phase. Ordered mesoporous silica and non-ordered porous carbon can be obtained by combustion of the pyrolyzed nanocomposites in air or etching with HF solution, respectively. Sulfonic acid groups can be readily introduced to such kind of silica-carbon nanocomposites by a standard sulfonation procedure with concentrated sulfuric acid. Excellent acid-catalytic activities and selectivities for the dimerization of styrene to produce 1,3-diphenyl-1-butene and dimerization of -methylstyrene to unsaturated dimers were demonstrated with the sulfonated materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361189400037 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.803 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.803; 2015 IF: 4.556  
  Call Number UA @ lucian @ c:irua:127836 Serial 4138  
Permanent link to this record
 

 
Author (up) Zhou, R.; Zhou, R.; Xian, Y.; Fang, Z.; Lu, X.; Bazaka, K.; Bogaerts, A.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 382 Issue 382 Pages 122745  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Selective conversion of bio-renewable ethanol under mild conditions especially at room temperature remains a major challenge for sustainable production of hydrogen and valuable carbon-based materials. In this study, adaptive non-thermal plasma is applied to deliver pulsed energy to rapidly and selectively reform ethanol in the absence of a catalyst. Importantly, the carbon atoms in ethanol that would otherwise be released into the environment in the form of CO or CO2 are effectively captured in the form of carbon dots (CDs). Three modes of non-thermal spark plasma discharges, i.e. single spark mode (SSM), multiple spark mode (MSM) and gliding spark mode (GSM), provide additional flexibility in ethanol reforming by controlling the processes of energy transfer and distribution, thereby affecting the flow rate, gas content, and energy consumption in H-2 production. A favourable combination of low temperature (< 40 degrees C), attractive conversion rate (gas flow rate of similar to 120 mL/min), high hydrogen yield (H-2 content > 90%), low energy consumption (similar to 0.96 kWh/m(3) H-2) and the effective generation of photoluminescent CDs (which are applicable for bioimaging or biolabelling) in the MSM indicate that the proposed strategy may offer a new carbon-negative avenue for comprehensive utilization of alcohols and mitigating the increasingly severe energy and environmental issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503381200200 Publication Date 2019-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited 20 Open Access  
  Notes ; ; Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number UA @ admin @ c:irua:165648 Serial 6318  
Permanent link to this record
 

 
Author (up) Zhou, X.-G.; Yang, C.-Q.; Sang, X.; Li, W.; Wang, L.; Yin, Z.-W.; Han, J.-R.; Li, Y.; Ke, X.; Hu, Z.-Y.; Cheng, Y.-B.; Van Tendeloo, G. pdf  doi
openurl 
  Title Probing the electron beam-induced structural evolution of halide perovskite thin films by scanning transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 19 Pages 10786-10794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A deep understanding of the fine structure at the atomic scale of halide perovskite materials has been limited by their sensitivity to the electron beam that is widely used for structural characterization. The sensitivity of a gamma-CsPbIBr2 perovskite thin film under electron beam irradiation is revealed by scanning transmission electron microscopy (STEM) through a universal large-range electron dose measurement, which is based on discrete single-electron events in the STEM mode. Our research indicates that the gamma-CsPbIBr2 thin film undergoes structural changes with increasing electron overall dose (e(-).A(-2)) rather than dose rate (e(-).A(-2).s(-1)), which suggests that overall dose is the key operative parameter. The electron beam-induced structural evolution of gamma-CsPbIBr2 is monitored by fine control of the electron beam dose, together with the analysis of high-resolution (S)TEM, diffraction, and energy-dispersive X-ray spectroscopy. Our results show that the gamma-CsPbIBr2 phase first forms an intermediate phase [e.g., CsPb(1-x)(IBr)((3-y))] with a superstructure of ordered vacancies in the pristine unit cell, while a fraction of Pb2+ is reduced to Pb-0. As the electron dose increases, Pb nanoparticles precipitate, while the remaining framework forms the Cs2IBr phase, accompanied by some amorphization. This work provides guidelines to minimize electron beam irradiation artifacts for atomic-resolution imaging on CsPbIBr2 thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655640900061 Publication Date 2021-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179187 Serial 6880  
Permanent link to this record
 

 
Author (up) Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E.H. pdf  url
doi  openurl
  Title Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons Type A1 Journal article
  Year 2018 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 10 Issue 10 Pages 974-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C-2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C-2 products. Here, we use boron to tune the ratio of Cu delta+ to Cu-0 active sites and improve both stability and C-2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C-2 products. We report experimentally a C-2 Faradaic efficiency of 79 +/- 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of similar to 40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442395200013 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 700 Open Access OpenAccess  
  Notes ; This work was supported financially by funding from TOTAL S.A., the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-Inspired Solar Energy programme, a University of Toronto Connaught grant, the Ministry of Science, Natural Science Foundation of China (21471040, 21271055 and 21501035), the Innovation-Driven Plan in Central South University project (2017CX003), a project from State Key Laboratory of Powder Metallurgy in Central South University, the Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan and the China Scholarship Council programme. This work benefited from the soft X-ray microcharacterization beamline at CLS, sector 20BM at the APS and the Ontario Centre for the Characterisation of Advanced Materials at the University of Toronto. H.Y. acknowledges financial support from the Research Foundation-Flanders (FWO postdoctoral fellowship). C.Z. acknowledges support from the International Academic Exchange Fund for Joint PhD Students from Tianjin University. P.D.L. acknowledges financial support from the Natural Sciences and Engineering Research Council in the form of the Canada Graduate Scholarship-Doctoral award. S.B. and E.B. acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). The authors thank B. Zhang, N. Wang, C. T. Dinh, T. Zhuang, J. Li and Y. Zhao for fruitful discussions, as well as Y. Hu and Q. Xiao from CLS, and Z. Finfrock and M. Ward from APS for their help during the course of study. Computations were performed on the SOSCIP Consortium's Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. ; ecas_sara Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:153693UA @ admin @ c:irua:153693 Serial 5091  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: