|   | 
Details
   web
Records
Author (down) Kolev, I.; Bogaerts, A.
Title PIC – MCC numerical simulation of a DC planar magnetron Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 127-134
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000235628300005 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 27 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56077 Serial 2621
Permanent link to this record
 

 
Author (down) Koelman, P.; Heijkers, S.; Tadayon Mousavi, S.; Graef, W.; Mihailova, D.; Kozak, T.; Bogaerts, A.; van Dijk, J.
Title A Comprehensive Chemical Model for the Splitting of CO2in Non-Equilibrium Plasmas: A Comprehensive Chemical Model for CO2Splitting Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600155
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An extensive CO2 plasmamodel is presented that is relevant for the production of ‘‘solar fuels.’’ It is based on reaction rate coefficients fromrigorously reviewed literature, and is augmented with reactionrate coefficients that are obtained fromscaling laws.The input data set,which is suitable for usage with the plasma simulation software Plasimo (https://plasimo.phys.tue.nl/), is available via the Plasimo and publisher’s websites.1 The correctness of this model implementation has been established by independent ZDPlasKin implementation (http://www.zdplaskin.

laplace.univ-tlse.fr/), to verify that the results agree. Results of these ‘‘global models’’ are presented for a DBD plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000009 Publication Date 2016-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 21 Open Access Not_Open_Access
Notes Dutch Technology Foundation STW; Ministerie van Economische Zaken; Hercules Foundation; Acknowledgements: This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Furthermore, we acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program PSI-Physical Chemistry of Plasma- Surface Interactions by the Belgian Federal Office for Science Policy (BELSPO). Part of the calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142643 Serial 4565
Permanent link to this record
 

 
Author (down) Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A.
Title Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue 5 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648710900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access OpenAccess
Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759
Permanent link to this record
 

 
Author (down) Hervieu, M.; Michel, C.; Martin, C.; Huvé, M.; Van Tendeloo, G.; Maignan, A.; Pelloquin, D.; Goutenoire, F.; Raveau, B.
Title Mécanismes de la non-stoechiométrie dans les nouveaux supraconducteurs à haute Tc Type A1 Journal article
Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
Volume 4 Issue Pages 2057-2067
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1994PT17900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4320 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10041 Serial 1973
Permanent link to this record
 

 
Author (down) Herrebout, D.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J.; Vanhulsel, A.
Title A one-dimensional fluid model for an acetylene rf discharge: a study of the plasma chemistry Type A1 Journal article
Year 2003 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 31 Issue Pages 659-664
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000184833400022 Publication Date 2003-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 26 Open Access
Notes Approved Most recent IF: 1.052; 2003 IF: 0.840
Call Number UA @ lucian @ c:irua:44021 Serial 2462
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Golda, J.; Gathen, V.S.; Bogaerts, A
Title Applications of the COST Plasma Jet: More than a Reference Standard Type A1 Journal article
Year 2019 Publication Plasma Abbreviated Journal Plasma
Volume 2 Issue 3 Pages 316-327
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-6182 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes We would like to thank Deborah O’Connell (York Plasma Institute, Department of Physics, University of York, United Kingdom) and Angela Privat-Maldonado (PLASMANT, University of Antwerp) for useful discussions. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:161628 Serial 5287
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.; Gijbels, R.
Title Numerical investigation of ion energy distribution functions in single and dual frequency capacitively coupled plasma reactors Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 69 Issue Pages 026406
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220255500058 Publication Date 2004-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 97 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:44025 Serial 2395
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.
Title Negative ion behavior in single- and dual-frequency plasma etching reactors: particle-in-cell/Monte Carlo collision study Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 73 Issue 3 Pages 036402,1-9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000236467700081 Publication Date 2006-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 7 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:57764 Serial 2290
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.
Title Plasma characteristics of an Ar/CF4/N2 discharge in an asymmetric dual frequency reactor: numerical investigation by a PIC/MC model Type A1 Journal article
Year 2006 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 15 Issue Pages 368-377
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000240655500010 Publication Date 2006-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 35 Open Access
Notes Approved Most recent IF: 3.302; 2006 IF: 2.346
Call Number UA @ lucian @ c:irua:57550 Serial 2630
Permanent link to this record
 

 
Author (down) Georgieva, V.; Berthelot, A.; Silva, T.; Kolev, S.; Graef, W.; Britun, N.; Chen, G.; van der Mullen, J.; Godfroid, T.; Mihailova, D.; van Dijk, J.; Snyders, R.; Bogaerts, A.; Delplancke-Ogletree, M.-P.
Title Understanding Microwave Surface-Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments: Understanding Microwave Surface-Wave Sustained Plasmas … Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600185
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An Ar plasma sustained by a surfaguide wave launcher is investigated at intermediate pressure (200–2667 Pa). Two 2D self-consistent models (quasi-neutral and plasma bulk-sheath) are developed and benchmarked. The complete set of electromagnetic and fluid equations and the boundary conditions are presented. The transformation of fluid equations from a local reference frame, that is, moving with plasma or when the gas flow is zero, to a laboratory reference frame, that is,

accounting for the gas flow, is discussed. The pressure range is extended down to 80 Pa by experimental measurements. The electron temperature decreases with pressure. The electron density depends linearly on power, and changes its behavior with pressure depending on the product of pressure and radial plasma size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000012 Publication Date 2016-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access Not_Open_Access
Notes Federaal Wetenschapsbeleid; European Marie Curie RAPID project; European Union's Seventh Framework Programme, 606889 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142807 Serial 4568
Permanent link to this record
 

 
Author (down) Garzia Trulli, M.; Claes, N.; Pype, J.; Bals, S.; Baert, K.; Terryn, H.; Sardella, E.; Favia, P.; Vanhulsel, A.
Title Deposition of aminosilane coatings on porous Al2O3microspheres by means of dielectric barrier discharges Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600211
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Advances in the synthesis of porous microspheres and in their functionalization are increasing the interest in applications of alumina. This paper deals with coatings plasma deposited from 3-aminopropyltriethoxysilane by means of dielectric barrier discharges on alumina porous microspheres, shaped by a vibrational droplet coagulation technique. Aims of the work are the functionalization of the particles with active amino groups, as well as the evaluation of their surface coverage and of the penetration of the coatings into their pores. A multi-diagnostic approach was used for the chemical/morphological characterization of the particles. It was found that 5 min exposure to plasma discharges promotes the deposition of homogeneous coatings onto the microspheres and within their pores, down to 1 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410773200003 Publication Date 2017-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access OpenAccess
Notes The technical assistance of the VITO staff (Materials Dpt.) is gratefully acknowledged, especially D. Havermans, E. Van Hoof, R. Kemps (SEM-EDX), and A. De Wilde (Hg Porosimetry). Drs. S. Mullens and G. Scheltjens are kindly acknowledged for constructive discussions. Strategic Initiative Materials in Flanders (SIM) is gratefully acknowledged for its financial support. This research was carried out in the framework of the SIM-TRAP program (Tools for rational processing of nano-particles: controlling and tailoring nanoparticle based or nanomodified particle based materials). N. Claes and S. Bals acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.846
Call Number EMAT @ emat @ c:irua:139511UA @ admin @ c:irua:139511 Serial 4342
Permanent link to this record
 

 
Author (down) Fridman, A.; Lin, A.; Miller, V.; Bekeschus, S.; Wende, K.; Weltmann, K.-D.
Title The plasma treatment unit : an attempt to standardize cold plasma treatment for defined biological effects Type A1 Journal article
Year 2018 Publication Plasma medicine Abbreviated Journal
Volume 8 Issue 2 Pages 195-201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma bioscience and medicine are both rapidly growing fields. Their aim is to utilize cold physical plasmas for desired biological outcomes in medicine, biotechnology, agriculture, and general hygienic purposes. Great success has been achieved in many applications with individually designed plasma sources and plasma parameters. Although lab and application-specific tuning of plasmas is a great advantage of this technology, standardized units to define plasma treatments are required to facilitate comparison of the effects found by different researchers who do not use the same plasma sources. By drawing conclusions from over a century of plasma biomedical research, we propose that all researchers adopt the use of a standardized value, the plasma treatment unit (PTU), to describe the biological effects of different cold plasma sources and treatment regimens. It quantifies a key plasma effector in biological systems as an indicator and may provide the foundation for an analogous and clinically relevant unit in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:155652 Serial 5123
Permanent link to this record
 

 
Author (down) Ferreira, W.P.; Peeters, F.M.; Farias, G.A.
Title Normal mode spectra of two-dimensional classical atoms confined by a Coulomb potential Type A1 Journal article
Year 2003 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 68 Issue Pages 066405,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000188316700078 Publication Date 2003-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 9 Open Access
Notes Approved Most recent IF: 2.366; 2003 IF: 2.202
Call Number UA @ lucian @ c:irua:69416 Serial 2368
Permanent link to this record
 

 
Author (down) Ferreira, W.P.; Partoens, B.; Peeters, F.M.; Farias, G.A.
Title Structural phase transitions and unusual melting behavior in a classical two-dimensional Coulomb bound cluster Type A1 Journal article
Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 71 Issue Pages 021501,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000228245700023 Publication Date 2005-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:62445 Serial 3251
Permanent link to this record
 

 
Author (down) Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A.
Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536892900001 Publication Date 2020-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access
Notes National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372
Permanent link to this record
 

 
Author (down) de Bleecker, K.; Bogaerts, A.; Goedheer, W.; Gijbels, R.
Title Investigation of growth mechanisms of clusters in a silane discharge with the use of a fluid model Type A1 Journal article
Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 32 Issue 2 Pages 691-698
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000222278400026 Publication Date 2004-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 29 Open Access
Notes Approved Most recent IF: 1.052; 2004 IF: 1.042
Call Number UA @ lucian @ c:irua:46379 Serial 1732
Permanent link to this record
 

 
Author (down) de Bleecker, K.; Bogaerts, A.; Goedheer, W.
Title Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 73 Issue 2 Pages 026405,1-16
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The initial stage of nanoparticle formation and growth in radiofrequency acetylene (C2H2) plasmas is investigated by means of a self-consistent one-dimensional fluid model. A detailed chemical kinetic scheme, containing electron impact, ion-neutral, and neutral-neutral reactions, has been developed in order to predict the underlying dust growth mechanisms and the most important dust precursors. The model considers 41 different species (neutrals, radicals, ions, and electrons) describing hydrocarbons (CnHm) containing up to 12 carbon atoms. Possible routes for particle growth are discussed. Both positive and negative ion reaction pathways are considered, as consecutive anion- and cation-molecule reactions seem to lead to a fast build up of the carbon skeleton.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235667700086 Publication Date 2006-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 89 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:56337 Serial 666
Permanent link to this record
 

 
Author (down) de Bleecker, K.; Bogaerts, A.; Goedheer, W.
Title Modeling of the formation and transport of nanoparticles in silane plasmas Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 70 Issue Pages 056407,1-8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The behavior of nanoparticles in a low-pressure silane discharge is studied with the use of a self-consistent one-dimensional fluid model. Nanoparticles of a given (prescribed) radius are formed in the discharge by the incorporation of a dust growth mechanism, i.e., by including a step in which large anions (typically Si12H−25), produced in successive chemical reactions of anions with silane molecules, are transformed into particles. Typically a few thousand anions are used for one nanoparticle. The resulting particle density and the charge on the particles are calculated with an iterative method. While the spatial distribution and the charge of the particles are influenced by the plasma, the presence of the nanoparticles will in turn influence the plasma properties. Several simulations with different particle radii are performed. The resulting density profile of the dust will greatly depend on the particle size, as it reacts to the shift of the balance of the different forces acting on the particles.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000225970700092 Publication Date 2004-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 31 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:49432 Serial 2132
Permanent link to this record
 

 
Author (down) de Bleecker, K.; Bogaerts, A.; Goedheer, W.
Title Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas Type A1 Journal article
Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 71 Issue Pages 066405,1-9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000230275000081 Publication Date 2005-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 25 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:52907 Serial 2927
Permanent link to this record
 

 
Author (down) de Bleecker, K.; Bogaerts, A.; Gijbels, R.; Goedheer, W.
Title Numerical investigation of particle formation mechanisms in silane discharges Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 69 Issue Pages 056409,1-16
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000221813400085 Publication Date 2004-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 74 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:45497 Serial 2396
Permanent link to this record
 

 
Author (down) De Bie, C.; Verheyde, B.; Martens, T.; van Dijk, J.; Paulussen, S.; Bogaerts, A.
Title Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge Type A1 Journal article
Year 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 8 Issue 11 Pages 1033-1058
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional fluid model for a dielectric barrier discharge in methane, used as a chemical reactor for gas conversion, is developed. The model describes the gas phase chemistry governing the conversion process of methane to higher hydrocarbons. The spatially averaged densities of the various plasma species as a function of time are discussed. Besides, the conversion of methane and the yields of the reaction products as a function of the residence time in the reactor are shown and compared with experimental data. Higher hydrocarbons (C2Hy and C3Hy) and hydrogen gas are typically found to be important reaction products. Furthermore, the main underlying reaction pathways are determined.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000297745500005 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 70 Open Access
Notes Approved Most recent IF: 2.846; 2011 IF: 2.468
Call Number UA @ lucian @ c:irua:92443 Serial 1227
Permanent link to this record
 

 
Author (down) De Bie, C.; Martens, T.; van Dijk, J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A.
Title Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 2 Pages 024008,1-024008,11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO2 or O2 in a dielectric barrier discharge. Sixty-nine different plasma species (electrons, ions, molecules, radicals) are included in the model, as well as a comprehensive set of chemical reactions. The calculation results presented in this paper include the conversion of the reactants and the yields of the reaction products as a function of residence time in the reactor, for different gas mixing ratios. Syngas (i.e. H2 + CO) and higher hydrocarbons (C2Hx) are typically found to be important reaction products.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000290719900009 Publication Date 2011-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 38 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:87868 Serial 689
Permanent link to this record
 

 
Author (down) Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal
Volume 43 Issue Pages 635-656
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000966639200001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number UA @ admin @ c:irua:196033 Serial 8516
Permanent link to this record
 

 
Author (down) Chai, Z.-N.; Wang, X.-C.; Yusupov, M.; Zhang, Y.-T.
Title Unveiling the interaction mechanisms of cold atmospheric plasma and amino acids by machine learning Type A1 Journal article
Year 2024 Publication Plasma processes and polymers Abbreviated Journal
Volume Issue Pages 1-26
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has attracted tremendous interest in a variety of medical conditions, ranging from wound healing to antimicrobial applications, even in cancer treatment, through the interactions of cold atmospheric plasma (CAP) and various biological tissues directly or indirectly. The underlying mechanisms of CAP treatment are still poorly understood although the oxidative effects of CAP with amino acids, peptides, and proteins have been explored experimentally. In this study, machine learning (ML) technology is introduced to efficiently unveil the interaction mechanisms of amino acids and reactive oxygen species (ROS) in seconds based on the data obtained from the reactive molecular dynamics (MD) simulations, which are performed to probe the interaction of five types of amino acids with various ROS on the timescale of hundreds of picoseconds but with the huge computational load of several days. The oxidative reactions typically start with H-abstraction, and the details of the breaking and formation of chemical bonds are revealed; the modification types, such as nitrosylation, hydroxylation, and carbonylation, can be observed. The dose effects of ROS are also investigated by varying the number of ROS in the simulation box, indicating agreement with the experimental observation. To overcome the limits of timescales and the size of molecular systems in reactive MD simulations, a deep neural network (DNN) with five hidden layers is constructed according to the reaction data and employed to predict the type of oxidative modification and the probability of occurrence only in seconds as the dose of ROS varies. The well-trained DNN can effectively and accurately predict the oxidative processes and productions, which greatly improves the computational efficiency by almost ten orders of magnitude compared with the reactive MD simulation. This study shows the great potential of ML technology to efficiently unveil the underpinning mechanisms in plasma medicine based on the data from reactive MD simulations or experimental measurements. In this study, since reactive molecular dynamics simulation can currently only describe interactions between a few hundred atoms in a few hundred picoseconds, deep neural networks (DNN) are introduced to enhance the simulation results by predicting more data efficiently. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001202061200001 Publication Date 2024-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.5 Times cited Open Access
Notes Approved Most recent IF: 3.5; 2024 IF: 2.846
Call Number UA @ admin @ c:irua:205512 Serial 9181
Permanent link to this record
 

 
Author (down) Cao, L.-H.; Yu, W.; Xu, H.; Zheng, C.-Y.; Liu, Z.-J.; Li, B.; Bogaerts, A.
Title Terahertz radiation from oscillating electrons in laser-induced wake fields Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 70 Issue Pages 046408,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Strong terahertz (1THz=1012Hz) radiation can be generated by the electron oscillation in fs-laser-induced wake fields. The interaction of a fs-laser pulse with a low-density plasma layer is studied in detail using numerical simulations. The spatial distribution and temporal evolution of terahertz electron current developed in a low-density plasma layer are presented, which enables us to calculate the intensity distribution of THz radiation. It is shown that laser and plasma parameters, such as laser intensity, pulse width, and background plasma density, are of key importance to the process. The optimum condition for wake-field excitation and terahertz emission is discussed upon the simulation results. Radiation peaked at 6.4 THz, with 900 fs duration and 9% bandwidth, can be generated in a plasma of density 5×1017cm−3. It turns out that the maximum radiation intensity scales as n03a04 when wake field is resonantly excited, where n0 and a0 are, respectively, the plasma density and the normalized field amplitude of the laser pulse.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000225689600086 Publication Date 2004-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 9 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:49818 Serial 3509
Permanent link to this record
 

 
Author (down) Cangi, A.; Moldabekov, Z.A.; Neilson, D.
Title International Conference on “Strongly Coupled Coulomb Systems” (July 24-29, 2022, Görlitz, Germany) Type Editorial
Year 2023 Publication Contributions to plasma physics Abbreviated Journal
Volume 63 Issue 9-10 Pages e202300110-3
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001100083800001 Publication Date 2023-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042; 1521-3986 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.6 Times cited Open Access
Notes Approved Most recent IF: 1.6; 2023 IF: 1.44
Call Number UA @ admin @ c:irua:201156 Serial 9051
Permanent link to this record
 

 
Author (down) Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A.
Title Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 13 Issue Pages 094504,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000240877800057 Publication Date 2006-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 17 Open Access
Notes Approved Most recent IF: 2.115; 2006 IF: 2.258
Call Number UA @ lucian @ c:irua:59375 Serial 2995
Permanent link to this record
 

 
Author (down) Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
Title Particle-in-cell/Monte Carlo collisions model for the reactive sputter deposition of nitride layers Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue S:1 Pages S784-S788
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A 2d3v Particle-in-cell/Monte Carlo collisions (PIC/MCC) model was constructed for an Ar/N2 reactive gas mixture in a magnetron discharge. A titanium target was used, in order to study the sputter deposition of a TiNx thin film. Cathode currents and voltages were calculated self-consistently and compared with experiments. Also, ion fluxes to the cathode were calculated, which cause sputtering of the target. The sputtered atom fluxes from the target, and to the substrate were calculated, in order to visualize the deposition of the TiNx film.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000272302900149 Publication Date 2009-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 2 Open Access
Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:79364 Serial 2558
Permanent link to this record
 

 
Author (down) Bultinck, E.; Bogaerts, A.
Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 4 Pages 045013-045013,12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000295829800015 Publication Date 2011-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 7 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:89732 Serial 316
Permanent link to this record
 

 
Author (down) Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G.
Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 5 Pages 053002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384715400001 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 460 Open Access
Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628
Permanent link to this record