|   | 
Details
   web
Records
Author (up) Hamelet, S.; Gibot, P.; Casas-Cabanas, M.; Bonnin, D.; Grey, C.P.; Cabana, J.; Leriche, J.B.; Rodriguez-Carvajal, J.; Courty, M.; Levasseur, S.; Carlach, P.; Van Thournout, M.; Tarascon, J.M.; Masquelier, C.;
Title The effects of moderate thermal treatments under air on LiFePO4-based nano powders Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 23 Pages 3979-3991
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The thermal behavior under air of LiFePO(4)-based powders was investigated through the combination of several techniques such as temperature-controlled X-ray diffraction, thermogravimetric analysis and Mossbauer and NMR spectroscopies. The reactivity with air at moderate temperatures depends on the particle size and leads to progressive displacement of Fe from the core structure yielding nano-size Fe(2)O(3) and highly defective, oxidized Li(x)Fe(y)PO(4) compositions whose unit-cell volume decreases dramatically when the temperature is raised between 400 and 600 K. The novel LiFePO(4)-like compositions display new electrochemical reactivity when used as positive electrodes in Li batteries. Several redox phenomena between 3.4 V and 2.7 V vs. Li were discovered and followed by in-situ X-ray diffraction, which revealed two distinct solid solution domains associated with highly anisotropic variations of the unit-cell constants.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000266615800024 Publication Date 2009-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 93 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94582 Serial 867
Permanent link to this record
 

 
Author (up) Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.;
Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 4 Issue 4 Pages 1295-1304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370723300020 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited Open Access
Notes Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:132327 Serial 4211
Permanent link to this record
 

 
Author (up) Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.;
Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 3127-3138
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000371077300040 Publication Date 2015-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 44 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:132322 Serial 4191
Permanent link to this record
 

 
Author (up) Shan, L.; Punniyakoti, S.; Van Bael, M.J.; Temst, K.; Van Bael, M.K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.G.;
Title Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts : a facile way to large-scale ordered arrays of transition-metal nanoparticles Type A1 Journal article
Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 2 Issue 4 Pages 701-707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new and facile approach is presented for generating quasi-regular patterns of transition metal-based nanoparticles on flat substrates exploiting polystyrene-block-poly2vinyl pyridine (PS-b-P2VP) micelles as intermediate templates. Direct loading of such micellar nanoreactors by polar transition metal salts in solution usually results in nanoparticle ensembles exhibiting only short range order accompanied by broad distributions of particle size and inter-particle distance. Here, we demonstrate that the use of P2VP homopolymers of appropriate length as molecular carriers to transport precursor salts into the micellar cores can significantly increase the degree of lateral order within the final nanoparticle arrays combined with a decrease in spreading in particle size. Thus, a significantly extended range of materials is now available which can be exploited to study fundamental properties at the transition from clusters to solids by means of well-organized, well-separated, size-selected metal and metal oxide nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000329069900015 Publication Date 2013-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 5 Open Access Not_Open_Access
Notes FWO projects G.0456.12; 50 G.0346.09N; Methusalem project "NANO Approved Most recent IF: 5.256; 2014 IF: 4.696
Call Number UA @ lucian @ c:irua:113734 Serial 1489
Permanent link to this record
 

 
Author (up) Abakumov, A.M.; Rossell, M.D.; Seryakov, S.A.; Rozova, M.G.; Markina, M.M.; Van Tendeloo, G.; Antipov, E.V.
Title Synthesis and crystal structure of novel CaRMnSnO6(R = La, Pr, Nd, Sm-Dy) double perovskites Type A1 Journal article
Year 2005 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 15 Issue 46 Pages 4899-4905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000233439300005 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Iap V-1 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:56069 Serial 3424
Permanent link to this record
 

 
Author (up) Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 6 Issue 5 Pages 2337-2345
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000423981200049 Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 131 Open Access
Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945
Permanent link to this record
 

 
Author (up) Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P.
Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 9 Issue 28 Pages 15704-15713
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000671839200001 Publication Date 2021-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 18 Open Access OpenAccess
Notes Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867
Call Number EMAT @ emat @c:irua:179791 Serial 6802
Permanent link to this record
 

 
Author (up) Bafekry, A.; Obeid, M.; Nguyen, C.; Bagheri Tagani, M.; Ghergherehchi, M.
Title Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt₂HgSe₃): Van der Waals heterostructures with novel optoelectronic and thermoelectric performances Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 8 Issue 26 Pages 13248-13260
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Motivated by the recent successful synthesis of the layered platinum mineral jacutingaite (Pt2HgSe3), we have studied the optoelectronic, mechanical, and thermoelectric properties of graphene hetero-multilayer on Pt(2)HgSe(3)monolayer (PHS) heterostructures (LG/PHS) by using first-principles calculations. PHS is a topological insulator with a band gap of about 160 meV with fully relativistic calculations; when graphene layers are stacked on PHS, a narrow band gap of similar to 10-15 meV opens. In the presence of gate-voltage and out-of plane strain,i.e.pressure, the electronic properties are modified; the Dirac-cone of graphene can be shifted upwards (downward) to a lower (higher) binding energy. The absorption spectrum shows two peaks, which are located around 216 nm (5.74 eV) and protracted to 490 nm (2.53 eV), indicating that PHS could absorb more visible light. Increasing the number of graphene layers on PHS has a positive impact on the UV-vis light absorption and gives a clear red-shift with enhanced absorption intensity. To investigate the electronic performance of the heterostructure, the electrical conductance and thermopower of a device composed of graphene layers and PHS is examined by a combination of DFT and Green function formalism. The number of graphene layers can significantly tune the thermopower and electrical conductance. This analysis reveals that the heterostructures not only significantly affect the electronic properties, but they can also be used as an efficient way to modulate the optic and thermoelectric properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546391600032 Publication Date 2020-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited 20 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2017R1A2B2011989) and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2019.05. ; Approved Most recent IF: 11.9; 2020 IF: 8.867
Call Number UA @ admin @ c:irua:169755 Serial 6529
Permanent link to this record
 

 
Author (up) Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J.
Title Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
Year 2022 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891928400001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited Open Access OpenAccess
Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9
Call Number EMAT @ emat @c:irua:192325 Serial 7229
Permanent link to this record
 

 
Author (up) Ben Dkhil, S.; Pfannmöller, M.; Ata, I.; Duche, D.; Gaceur, M.; Koganezawa, T.; Yoshimoto, N.; Simon, J.-J.; Escoubas, L.; Videlot-Ackermann, C.; Margeat, O.; Bals, S.; Bauerle, P.; Ackermann, J.
Title Time evolution studies of dithieno[3,2-b:2 ',3 '-d] pyrrole-based A-D-A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 1005-1013
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Solvent vapor annealing (SVA) is one of the main techniques to improve the morphology of bulk heterojunction solar cells using oligomeric donors. In this report, we study time evolution of nanoscale morphological changes in bulk heterojunctions based on a well-studied dithienopyrrole-based A-D-A oligothiophene (dithieno[3,2-b: 2',3'-d] pyrrole named here 1) blended with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) to increase photocurrent density by combining scanning transmission electron microscopy and low-energy-loss spectroscopy. Our results show that SVA transforms the morphology of 1 : PC71BM blends by a three-stage mechanism: highly intermixed phases evolve into nanostructured bilayers that correspond to an optimal blend morphology. Additional SVA leads to completely phaseseparated micrometer-sized domains. Optical spacers were used to increase light absorption inside optimized 1 : PC71BM blends leading to solar cells of 7.74% efficiency but a moderate photocurrent density of 12.3 mA cm (-2). Quantum efficiency analyses reveal that photocurrent density is mainly limited by losses inside the donor phase. Indeed, optimized 1 : PC71BM blends consist of large donor-enriched domains not optimal for exciton to photocurrent conversion. Shorter SVA times lead to smaller domains; however they are embedded in large mixed phases suggesting that introduction of stronger molecular packing may help us to better balance phase separation and domain size enabling more efficient bulk heterojunction solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000394430800018 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 19 Open Access Not_Open_Access
Notes ; We acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant number: 287594). The synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1568). We further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142602UA @ admin @ c:irua:142602 Serial 4695
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M.
Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 2110-2114
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000395074300035 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142034 Serial 4556
Permanent link to this record
 

 
Author (up) Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Ramon Morante, J.; Barreca, D.
Title Engineering Au/MnO₂ hierarchical nanoarchitectures for ethanol electrochemical valorization Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 8 Issue 33 Pages 16902-16907
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of eco-friendly electrocatalysts for ethanol valorization is an open challenge towards sustainable hydrogen production. Herein we present an original fabrication route to effective electrocatalysts for the ethanol oxidation reaction (EOR). In particular, hierarchical MnO(2)nanostructures are grown on high-area nickel foam scaffolds by a plasma-assisted strategy and functionalized with low amounts of optimally dispersed Au nanoparticles. This strategy leads to catalysts with a unique morphology, designed to enhance reactant-surface contacts and maximize active site utilization. The developed nanoarchitectures show superior performances for ethanol oxidation in alkaline media. We reveal that Au decoration boosts MnO(2)catalytic activity by inducing pre-dissociation and pre-oxidation of the adsorbed ethanol molecules. This evidence validates our strategy as an effective route for the development of green electrocatalysts for efficient electrical-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000562931300008 Publication Date 2020-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited 16 Open Access OpenAccess
Notes ; This work was financially supported by Padova University DOR 2016-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects, as well as by the INSTM Consortium (INSTMPD004 – NETTUNO), AMGA Foundation Mn4Energy project and Insubria University FAR2018. J. V. and D. K. acknowledge funding from the Flemish Government (Hercules), GOA project “Solarpaint” (Antwerp University) and European Union's H2020 programme under grant agreement no. 823717 ESTEEM3. The authors are grateful to Dr Gianluca Corr for skillful technical support. ; esteem3TA; esteem3reported Approved Most recent IF: 11.9; 2020 IF: 8.867
Call Number UA @ admin @ c:irua:171989 Serial 6506
Permanent link to this record
 

 
Author (up) Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O.
Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 3 Issue 3 Pages 3971-3979
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352870400018 Publication Date 2015-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 19 Open Access
Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696
Call Number UA @ lucian @ c:irua:132575 Serial 4245
Permanent link to this record
 

 
Author (up) Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author (up) Çakir, D.; Sevik, C.; Peeters, F.M.
Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 2 Issue 46 Pages 9842-9849
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344998700007 Publication Date 2014-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 22 Open Access
Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696
Call Number UA @ lucian @ c:irua:122157 Serial 1046
Permanent link to this record
 

 
Author (up) Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 4 Pages 1226-1233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000286110400042 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 158 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88642 Serial 3145
Permanent link to this record
 

 
Author (up) Cassiers, K.; Linssen, T.; Aerts, K.; Cool, P.; Lebedev, O.; Van Tendeloo, G.; van Grieken, R.; Vansant, E.F.
Title Controlled formation of amine-templated mesostructured zirconia with remarkably high thermal stability Type A1 Journal article
Year 2003 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 13 Issue Pages 3033-3039
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000186907500040 Publication Date 2003-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 26 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:43522 Serial 502
Permanent link to this record
 

 
Author (up) Colomer, J.-F.; Henrard, L.; Van Tendeloo, G.; Lucas, A.; Lambin, P.
Title Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue 4 Pages 603-606
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000220224100021 Publication Date 2004-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54758 Serial 3339
Permanent link to this record
 

 
Author (up) Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 2642-2649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000348990500019 Publication Date 2014-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 23 Open Access OpenAccess
Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:125298 Serial 2673
Permanent link to this record
 

 
Author (up) Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 16 Pages 5907-5915
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000289260000012 Publication Date 2011-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 76 Open Access
Notes Esteem 026019 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88641 Serial 3936
Permanent link to this record
 

 
Author (up) Esken, D.; Zhang, X.; Lebedev, O.I.; Schröder, F.; Fischer, R.A.
Title Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metalorganic palladium precursors for loading with Pd nanoparticles Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 9 Pages 1314-1319
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The limitations of the loading of the porous metalorganic framework [Zn4O(bdc)3] (bdc = benzene-1,4-dicarboxylate; MOF-5 or IRMOF-1) with Pd nanoparticles was investigated. First, the volatile organometallic precursor [Pd(5-C5H5)(3-C3H5)] was employed to get the inclusion compound [Pd(5-C5H5)(3-C3H5)]x@MOF-5 via gas-phase infiltration at 10-3 mbar. A loading of four molecules of [Pd(5-C5H5)(3-C3H5)] per formula unit of MOF-5 (x = 4) can be reached (35 wt.% Pd). Second, the metalorganic precursor [Pd(acac)2] (acac = 2,4-pentanedionate) was used and the inclusion materials [Pd(acac)2]x@MOF-5 of different Pd loadings were obtained by incipient wetness infiltration. However, the maximum loading was lower as compared with the former case with about two precursor molecules per formula unit of MOF-5. Both loading routes are suitable for the synthesis of Pd nanoparticles inside the porous host matrix. Homogeneously distributed nanoparticles with diameter of 2.4(±0.2) nm can be achieved by photolysis of the inclusion compounds [Pd(5-C5H5)(3-C3H5)]x@MOF-5 (x 4), while the hydrogenolysis of [Pd(acac)2]x@MOF-5 (x 2) leads to a mixture of small particles inside the network (< 3 nm) and large Pd agglomerates (40 nm) on the outer surface of the MOF-5 specimens. The pure Pdx@MOF-5 materials proved to be stable under hydrogen pressure (2 bar) at 150 °C over many hours. Neither hydrogenation of the bdc linkers nor particle growth was observed. The new composite materials were characterized by 1H/13C-MAS-NMR, powder XRD, ICP-AES, FT-IR, N2 sorption measurements and high resolution TEM. Raising the Pd loading of a representative sample Pd4@MOF-5 (35 wt.% Pd) by using [Pd(5-C5H5)(3-C3H5)] as precursor in a second cycle of gas-phase infiltration and photolysis was accompanied by the collapse of the long-range crystalline order of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000263450300015 Publication Date 2009-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 100 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76318 Serial 2565
Permanent link to this record
 

 
Author (up) Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G.
Title Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers Type A1 Journal article
Year 2015 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal J Mater Chem B
Volume 3 Issue 3 Pages 5991-6000
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000358065100009 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-750X;2050-7518; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.543 Times cited 24 Open Access
Notes Approved Most recent IF: 4.543; 2015 IF: 4.726
Call Number c:irua:127131 Serial 2161
Permanent link to this record
 

 
Author (up) Goffin, A.-L.; Duquesne, E.; Raquez, J.-M.; Miltner, H.E.; Ke, X.; Alexandre, M.; Van Tendeloo, G.; van Mele, B.; Dubois, P.
Title From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites Type A1 Journal article
Year 2010 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 20 Issue 42 Pages 9415-9422
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of ε-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, Ph. Dubois, Eur. Polym. Journal, 2007, 43, 4103) were studied as masterbatches by melt-blending within their corresponding commercial polymeric matrices, i.e., poly(ε-caprolactone) (PCL) and poly(L,L-lactide) (PLA). For the sake of comparison, neat POSS nanoparticles were also dispersed in PCL and PLA. The objective was to prepare aliphatic polyester-based nanocomposites with enhanced crystallization behavior, and therefore, enhanced thermo-mechanical properties. Wide-angle X-ray scattering and transmission electron microscopy attested for the dispersion of individualized POSS nanoparticles in the resulting nanocomposite materials only when the polyester-grafted POSS nanohybrid was used as a masterbatch. The large impact of such finely dispersed (grafted) nanoparticles on the crystallization behavior for the corresponding polyester matrices was noticed, as evidenced by differential scanning calorimetry analysis. Indeed, well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly increasing the crystallinity degree of both PCL and PLA matrices. As a result, a positive impact on thermo-mechanical properties was highlighted by dynamic mechanical thermal analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000283264500017 Publication Date 2010-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 42 Open Access
Notes Fwo; Iap-6 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85784 Serial 1284
Permanent link to this record
 

 
Author (up) Grodzinska, D.; Pietra, F.; van Huis, M.A.; Vanmaekelbergh, D.; de Mello Donegá, C.
Title Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 31 Pages 11556-11565
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The properties of hetero-nanocrystals (HNCs) depend strongly on the mutual arrangement of the nanoscale components. In this work we have investigated the structural and morphological evolution of colloidal PbSe/CdSe core/shell quantum dots upon annealing under vacuum. Prior to annealing the PbSe core has an approximately octahedral morphology with eight {111} facets, and the CdSe shell has zinc-blende crystal structure. Thermal annealing under vacuum at temperatures between 150 °C and 200 °C induces a structural and morphological reconstruction of the HNCs whereby the PbSe core and the CdSe shell are reorganized into two hemispheres joined by a common {111} Se plane. This thermally induced reconstruction leads to considerable changes in the optical properties of the colloidal PbSe/CdSe HNCs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000293190200018 Publication Date 2011-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 44 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:91945 Serial 3632
Permanent link to this record
 

 
Author (up) Hadermann, J.; Abakumov, A.M.; d' Hondt, H.; Kalyuzhnaya, A.S.; Rozova, M.G.; Markina, M.M.; Mikheev, M.G.; Tristan, N.; Klingeler, R.; Büchner, B.; Antipov, E.V.
Title Synthesis and crystal structure of the Sr2Al1.07Mn0.93O5 brownmillerite Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 7 Pages 692-698
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000244085100016 Publication Date 2006-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 31 Open Access
Notes Iap V-1 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:62061 Serial 3430
Permanent link to this record
 

 
Author (up) Hadermann, J.; Pérez, O.; Créon, N.; Michel, C.; Hervieu, M.
Title The (3 + 2)D structure of oxygen deficient LaSrCuO3.52 Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 22 Pages 2344-2350
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000247349400020 Publication Date 2007-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Supergmr:Hprn-Ct-2000-0021 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:64749 c:irua:64749 Serial 13
Permanent link to this record
 

 
Author (up) Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M.
Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue Pages 2030-2035
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000222312500017 Publication Date 2004-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.626 Times cited 61 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025
Permanent link to this record
 

 
Author (up) Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S.
Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 15 Pages 4122-4130
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430538000036 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 4 Open Access OpenAccess
Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256
Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921
Permanent link to this record
 

 
Author (up) Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426483800015 Publication Date 2018-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author (up) Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 11 Open Access
Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record