toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 24 Pages 241910  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312490000035 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030  
Permanent link to this record
 

 
Author Barbier, M.; Papp, G.; Peeters, F.M. doi  openurl
  Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 16 Pages 163121-163121,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000303128500064 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:99129 Serial 3047  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Spatially dependent sensitivity of superconducting meanders as single-photon detectors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 262603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The photo-response of a thin current-carrying superconducting stripe with a 90 degrees turn is studied within the time-dependent Ginzburg-Landau theory. We show that the photon acting near the inner corner (where the current density is maximal due to the current crowding [J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011)]) triggers the nucleation of superconducting vortices at currents much smaller than the expected critical one, but does not bring the system to a higher resistive state and thus remains undetected. The transition to the resistive state occurs only when the photon hits the stripe away from the corner due to there uniform current distribution across the sample, and dissipation is due to the nucleation of a kinematic vortex-antivortex pair near the photon incidence. We propose strategies to account for this problem in the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731627]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305831500057 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). G. R. B. acknowledges individual support from FWO-VI. ; Approved (down) Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100336 Serial 3066  
Permanent link to this record
 

 
Author Gontard, L.C.; Jinschek, J.R.; Ou, H.; Verbeeck, J.; Dunin-Borkowski, R.E. pdf  doi
openurl 
  Title Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2 Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 263113  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO2 doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using electron tomography. The results show that transformations in insulators that have been subjected to intense irradiation using charged particles can be studied directly in three dimensions. The fabricated structures include core-shell nano-columns, sputtered regions, voids, and clusters. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731765]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305831500081 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100337 Serial 3651  
Permanent link to this record
 

 
Author Cooper, D.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping for the silicon-on-insulator generation of semiconductor devices by high-angle annular dark field scanning electron transmission microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue Pages 233121  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The strain in pMOS p-type metal-oxide-semiconductor devicesgrown on silicon-on-insulator substrates has been measured by using the geometrical phase analysis of high angle annular dark field scanning electron microscopy. We show that by using the latest generations of electron microscopes, the strain can now be quantitatively measured with a large field of view, a spatial resolution as low as 1 nm with a sensitivity as good as 0.15%. This technique is extremely flexible, provides both structural and strain information, and can be applied to all types of nanoscale materials both quickly and easily.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 2012-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136432 Serial 4509  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 20 Pages 203109-203109,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000297786500058 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 90 Open Access  
  Notes Hercules Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184  
Permanent link to this record
 

 
Author Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Electronic properties of hydrogenated silicene and germanene Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 22 Pages 223107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of hydrogenated silicene and germanene, so called silicane and germanane, respectively, are investigated using first-principles calculations based on density functional theory. Two different atomic configurations are found to be stable and energetically degenerate. Upon the adsorption of hydrogen, an energy gap opens in silicene and germanene. Their energy gaps are next computed using the HSE hybrid functional as well as the G(0)W(0) many-body perturbation method. These materials are found to be wide band-gap semiconductors, the type of gap in silicane (direct or indirect) depending on its atomic configuration. Germanane is predicted to be a direct-gap material, independent of its atomic configuration, with an average energy gap of about 3.2 eV, this material thus being potentially interesting for optoelectronic applications in the blue/violet spectral range. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595682]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700057 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 63 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105586 Serial 1003  
Permanent link to this record
 

 
Author Yusupov, M.; Bultinck, E.; Depla, D.; Bogaerts, A. doi  openurl
  Title Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 13 Pages 131502-131502,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A magnetron discharge is characterized by drifts of the charged particles guiding center, caused by the magnetic field, in contrast to unmagnetized discharges. Because of these drifts, a pronounced asymmetry of the discharge can be observed in a dual magnetron setup. In this work, it is found that the shape of the discharge in a dual magnetron configuration depends on the magnetic field configuration. In a closed configuration, strong drifts were observed in one preferential direction, whereas in a mirror configuration the deflection of the discharge was not so pronounced. Our calculations confirm experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289153600017 Publication Date 2011-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:87867 Serial 1026  
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Groeseneken, G.; Fischetti, M.V. doi  openurl
  Title Impact of field-induced quantum confinement in tunneling field-effect devices Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 14 Pages 143503,1-143503,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Being the working principle of a tunnel field-effect transistor, band-to-band tunneling is given a rigorous quantum mechanical treatment to incorporate confinement effects, multiple electron and hole valleys, and interactions with phonons. The model reveals that the strong band bending near the gate dielectric, required to create short tunnel paths, results in quantization of the energy bands. Comparison with semiclassical models reveals a big shift in the onset of tunneling. The effective mass difference of the distinct valleys is found to reduce the subthreshold swing steepness.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289297800074 Publication Date 2011-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 76 Open Access  
  Notes ; The authors acknowledge Anne Verhulst for useful discussions. William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by IMEC's Industrial Affiliation Program. ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:89297 Serial 1559  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Inelastic electron tunneling spectroscopy of HfO2 gate stacks : a study based on first-principles modeling Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 13 Pages 132101,1-132101,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A first-principles modeling approach is used to investigate the vibrational properties of HfO2. The calculated phonon density of states is compared to experimental results obtained from inelastic electron tunneling spectroscopy (IETS) of various metal-oxide-semiconductor devices with HfO2 gate stacks. This comparison provides deep insights into the nature of the signatures of the complicated IETS spectra and provides valuable structural information about the gate stack, such as the possible presence of oxygen vacancies in jet-vapour deposited HfO2. Important structural differences between the interface of atomic-layer or molecular-beam deposited HfO2 and the Si substrate are also revealed.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295618000036 Publication Date 2011-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 1 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:93611 Serial 1606  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Vandenberghe, W. url  doi
openurl 
  Title Low-field mobility in ultrathin silicon nanowire junctionless transistors Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 23 Pages 233509-233509,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the phonon, surface roughness and ionized impurity limited low-field mobility of ultrathin silicon n-type nanowire junctionless transistors in the long channel approximation with wire radii ranging from 2 to 5 nm, as function of gate voltage. We show that surface roughness scattering is negligible as long as the wire radius is not too small and ionized impurity scattering is the dominant scattering mechanism. We also show that there exists an optimal radius where the ionized impurity limited mobility exhibits a maximum.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000298006100095 Publication Date 2011-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes ; This work is supported by the EU project SQWIRE (FP7-ICT-STREP nr. 257111). William Vandenberghe gratefully acknowledges the Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:92865 Serial 1850  
Permanent link to this record
 

 
Author Kalkert, C.; Krisponeit, J.-O.; Esseling, M.; Lebedev, O.I.; Moshnyaga, V.; Damaschke, B.; Van Tendeloo, G.; Samwer, K. pdf  doi
openurl 
  Title Resistive switching at manganite/manganite interfaces Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 13 Pages 132512-132512,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report bipolar resistive switching between the interfaces of manganite nanocolumns. La0.7Sr0.3MnO3 films were prepared on Al2O3 substrates, where the films grow in nanocolumns from the substrate to the surface. Conductive atomic force microscopy directly detects that the resistive switching is located at the boundaries of the grains. Furthermore, mesoscopic transport measurements reveal a tunnel magnetoresistance. In combination with the resistive switching, this leads to a total of four different resistive states.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295618000052 Publication Date 2011-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:91884 Serial 2881  
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K. doi  openurl
  Title Spin and momentum filtering of electrons on the surface of a topological insulator Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 16 Pages 162101,1-162101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the transport properties of Dirac fermions on the surface of a three-dimensional topological insulator. Dirac electrons can be totally reflected in front of a magnetic/electric p-n junction. For a p-n-p structure, multiple total internal reflections at the interfaces result in the bound states in the channel, which behaves like an electronic waveguide. This p-n-p like structure exhibits spin and momentum filtering features and could be used as a spin and/or charge diode.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289842700032 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 33 Open Access  
  Notes ; ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:89971 Serial 3076  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Structural and vibrational properties of amorphous GeO2 from first-principles Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 20 Pages 202110,1-202110,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The structural and vibrational properties of amorphous germanium oxide (a-GeO<sub>2</sub>) are investigated using first-principles calculations based on density functional theory. We first generate an a-GeO<sub>2</sub> structure by first-principles molecular dynamics and analyze its structural properties. The vibrational spectra is then calculated within a density-functional approach. Both static and dynamic properties are in good agreement with experimental data. We next generate defects in our structure (oxygen vacancies with several density and charge states) and consider the most stable atomic configurations, focusing on the vibrational features of threefold coordinated O and divalent Ge centers.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000290812100038 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 226 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:90222 Serial 3202  
Permanent link to this record
 

 
Author Paul, M.; Kufer, D.; Müller, A.; Brück, S.; Goering, E.; Kamp, M.; Verbeeck, J.; Tian, H.; Van Tendeloo, G.; Ingle, N.J.C.; Sing, M.; Claessen, R. pdf  doi
openurl 
  Title Fe3O4/ZnO : a high-quality magnetic oxide-semiconductor heterostructure by reactive deposition Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 1 Pages 012512,1-012512,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the epitaxial growth of Fe<sub>3</sub>O<sub>4</sub> films on ZnO by a simple reactive deposition procedure using molecular oxygen as an oxidizing agent. X-ray photoelectron spectroscopy results evidence that the iron-oxide surface is nearly stoichiometric magnetite. X-ray diffraction results indicate monocrystalline epitaxy and almost complete structural relaxation. Scanning transmission electron micrographs reveal that the microstructure consists of domains which are separated by antiphase boundaries or twin boundaries. The magnetite films show rather slow magnetization behavior in comparison with bulk crystals probably due to reduced magnetization at antiphase boundaries in small applied fields.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000286009800055 Publication Date 2011-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 27 Open Access  
  Notes The authors acknowledge financial support by DFG through Forschergruppe FOR 1162. Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:88653 Serial 3532  
Permanent link to this record
 

 
Author Nasirpouri, F.; Engbarth, M.A.; Bending, S.J.; Peter, L.M.; Knittel, A.; Fangohr, H.; Milošević, M.V. url  doi
openurl 
  Title Three-dimensional ferromagnetic architectures with multiple metastable states Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 22 Pages 222506,1-222506,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate controllable dual-bath electrodeposition of nickel on architecture-tunable three-dimensional (3D) silver microcrystals. Magnetic hysteresis loops of individual highly faceted Ag-Ni core-shell elements reveal magnetization reversal that comprises multiple sharp steps corresponding to different stable magnetic states. Finite-element micromagnetic simulations on smaller systems show several jumps during magnetization reversal which correspond to transitions between different magnetic vortex states. Structures of this type could be realizations of an advanced magnetic data storage architecture whereby each element represents one multibit, storing a combination of several conventional bits depending on the overall number of possible magnetic states associated with the 3D core-shell shape.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700044 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by EPSRC in the U.K. under Grant Nos. EP/E039944/1 and EP/E040063/1, DYNAMAG project (EU FP7/2007-2013 Grant No. 233552), and FWO-Vlaanderen. ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:90008 Serial 3652  
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K. doi  openurl
  Title Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 3 Pages 032102,1-032102,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000293679000026 Publication Date 2011-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:92473 Serial 3749  
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 5 Pages 051914  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000286988400027 Publication Date 2011-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 66 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105604 Serial 3844  
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R. doi  openurl
  Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue Pages 261911-261913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000298638500027 Publication Date 2012-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:136428 Serial 4507  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Defected graphene nanoribbons under axial compression Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 15 Pages 153118,1-153118,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The buckling of defected rectangular graphene nanoribbons when subjected to axial stress with supported boundary conditions is investigated using atomistic simulations. The buckling strain and mechanical stiffness of monolayer graphene decrease with the percentage of randomly distributed vacancies. The elasticity to plasticity transition in the stress-strain curve, at low percentage of vacancies, are found to be almost equal to the buckling strain thresholds and they decrease with increasing percentage of vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000283216900069 Publication Date 2010-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (WO-Vl) and the Belgian Science Policy (IAP) ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85789 Serial 624  
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M. doi  openurl
  Title Electric field: A catalyst for hydrogenation of graphene Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 25 Pages 3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Due to the importance of hydrogenation of graphene for several applications, we present an alternative approach to hydrogenate graphene based on density functional theory calculations. We find that a negative perpendicular electric field F can act as a catalyst to reduce the energy barrier for molecular H<sub>2</sub> dissociative adsorption on graphene. Increasing -F above 0.02 a.u. (1 a.u.=5.14×10<sup>11</sup> V/m), this hydrogenation process occurs smoothly without any potential barrier.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000279168100052 Publication Date 2010-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 88 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:83924 Serial 881  
Permanent link to this record
 

 
Author Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Electronic properties of two-dimensional hexagonal germanium Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 8 Pages 082111,1-082111,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of two-dimensional hexagonal germanium, so called germanene, are investigated using first-principles simulations. Consistent with previous reports, the surface is predicted to have a poor metallic behavior, i.e., being metallic with a low density of states at the Fermi level. It is found that biaxial compressively strained germanene is a gapless semiconductor with linear energy dispersions near the K pointslike graphene. The calculated Fermi velocity of germanene is almost independent of the strain and is about 1.7×10<sup>6</sup> m/s, quite comparable to the value in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275027200044 Publication Date 2010-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 86 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:91716 Serial 1004  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. doi  openurl
  Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 23 Pages 233109,1-233109,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285364000067 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:86972 Serial 1056  
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J. doi  openurl
  Title First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 21 Pages 212906  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000284618300039 Publication Date 2010-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:105617 Serial 1213  
Permanent link to this record
 

 
Author Milošević, M.V.; Gillijns, W.; Silhanek, A.V.; Libál, A.; Peeters, F.M.; Moshchalkov, V.V. doi  openurl
  Title Guided nucleation of superconductivity on a graded magnetic substrate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 3 Pages 032503,1-032503,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate the controlled spatial nucleation of superconductivity in a thin film deposited on periodic arrays of ferromagnetic dots with gradually increasing diameter. The perpendicular magnetization of the dots induces vortex-antivortex molecules in the sample, with the number of (anti)vortices increasing with magnet size. The resulting gradient of antivortex density between the dots predetermines local nucleation of superconductivity in the sample as a function of the applied external field and temperature. In addition, the compensation between the applied magnetic field and the antivortices results in an unprecedented enhancement of the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000273890500034 Publication Date 2010-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-NES program. W. G., A. V. S., and A. L. acknowledge individual support from FWO-Vlaanderen. ; Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:81504 Serial 1400  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van Dijk, J. doi  openurl
  Title The influence of impurities on the performance of the dielectric barrier discharge Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 9 Pages 091501,1-091501,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, we investigate the effect of various levels of nitrogen impurity on the electrical performance of an atmospheric pressure dielectric barrier discharge in helium. We illustrate the different current profiles that are obtained, which exhibit one or more discharge pulses per half cycle and evaluate their performance in ionizing the discharge and dissipating the power. It is shown that flat and broad current profiles perform the best in ionizing the discharge and use the least amount of power per generated charged particle.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275246200008 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 28 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:80944 Serial 1624  
Permanent link to this record
 

 
Author O'Regan, T.P.; Hurley, P.K.; Sorée, B.; Fischetti, M.V. doi  openurl
  Title Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures : charge quantization and nonparabolic corrections Type A1 Journal article
  Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 21 Pages 213514,1-213514,3  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract The capacitance-voltage (C-V) characteristic is calculated for p-type In<sub>0.53</sub>Ga<sub>0.47</sub>As metal-oxide-semiconductor (MOS) structures based on a self-consistent PoissonSchrödinger solution. For strong inversion, charge quantization leads to occupation of the satellite valleys which appears as a sharp increase in the capacitance toward the oxide capacitance. The results indicate that the charge quantization, even in the absence of interface defects (D<sub>it</sub>), is a contributing factor to the experimental observation of an almost symmetric C-V response for In<sub>0.53</sub>Ga<sub>0.47</sub>As MOS structures. In addition, nonparabolic corrections are shown to enhance the depopulation of the Γ valley, shifting the capacitance increase to lower inversion charge densities.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278183200090 Publication Date 2010-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:89509 Serial 2143  
Permanent link to this record
 

 
Author Maignan, A.; Lebedev, O.I.; Van Tendeloo, G.; Martin, C.; Hébert, S. doi  openurl
  Title Negative magnetoresistance in a V3+/V4+ mixed valent vanadate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 23 Pages 232502,1-232502,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetotransport and magnetic properties of the PbV6O11 vanadate, crystallizing in the P63mc space group, reveal the existence of a negative magnetoresistance related to its ferromagnetic state (TC ∼ 90 K). The maximum effect is observed at 20 K reaching −30% in 9 T. The structural study of this ceramic reveals a V/Pb ratio smaller than expected from the formula. This is explained by the presence of numerous stacking faults observed by high resolution transmission electron microscopy. The existence of these planar defects acting as resistive barriers along the c axis could be responsible for tunneling magnetoresistance.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278695900045 Publication Date 2010-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:83293 Serial 2291  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; van Dijk, J. doi  openurl
  Title Pulse shape influence on the atmospheric barrier discharge Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 13 Pages 131503,1-131503,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter we compare the effect of a radio-frequency sine, a low frequency sine, a rectangular and a pulsed dc voltage profile on the calculated electron production and power consumption in the dielectric barrier discharge. We also demonstrate using calculated potential distribution profiles of high time and space resolution how the pulsed dc discharge generates a secondary discharge pulse by deactivating the power supply.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000276275300019 Publication Date 2010-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 35 Open Access  
  Notes Approved (down) Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:81538 Serial 2738  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: