|   | 
Details
   web
Records
Author Pahlke, P.; Sieger, M.; Ottolinger, R.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Haenisch, J.; Holzapfel, B.; Schultz, L.; Nielsch, K.; Huehne, R.
Title Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates Type A1 Journal article
Year 2018 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 31 Issue 4 Pages 044007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I-c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 mu m using pulsed laser deposition with a growth rate of about 1.2 nm s(-1). Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O-6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 mu m, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J(c) of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I-c increases up to a thickness of 5 mu m. A comparison between films with a thickness of 1.3 mu m revealed that the anisotropy of the critical current density J(c)(theta) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B vertical bar vertical bar c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J(c) values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000442196400001 Publication Date 2018-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 9 Open Access OpenAccess
Notes ; The authors acknowledge financial support from EURO-TAPES, a collaborative project funded by the European Union's Seventh Framework Programme (FP7/ 2007-2013) under Grant Agreement no. 280432. We thank A Usoskin (Bruker HTS GmbH, Germany) for the provision of buffered templates, and M Bianchetti, A Kursumovic and J L Mac-Manus-Driscoll (University of Cambridge, UK) for the supply of BYNTO targets. The authors also gratefully acknowledge the technical assistance of J Scheiter, M Kuhnel, U Besold (IFW) and R Nast (KIT). ; Approved (down) Most recent IF: 2.878
Call Number UA @ lucian @ c:irua:153775 Serial 5108
Permanent link to this record
 

 
Author Verbist, K.; Lebedev, O.I.; Van Tendeloo, G.; Verhoeven, M.A.J.; Rijnders, A.J.H.M.; Blank, D.H.A.
Title Low- or high-angle Ar ion-beam etching to create ramp-type Josephson junctions Type A1 Journal article
Year 1996 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 9 Issue Pages 978-984
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos A1996VR54700009 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.325 Times cited 10 Open Access
Notes Approved (down) COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:15469 Serial 1851
Permanent link to this record
 

 
Author Ye, M.; Schroeder, J.; Mehbod, M.; Deltour, R.; Naessens, G.; Duvigneaud, P.H.; Verbist, K.; Van Tendeloo, G.
Title Structural properties of Zn-substituted epitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
Year 1996 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 9 Issue 7 Pages 543-548
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We optimized the deposition of YBa2(Cu1-xZnx)(3)O-7-delta thin-films using inverted cylindrical magnetron sputtering and report here a detailed structural study, especially in relation to crystal growth, associated surface morphology, Y2O3 precipitation and other secondary phases important for flux pinning. We find that the epitaxial quality of the Zn-substituted YBa2Cu3O7-delta films is decreased compared with high-quality pure YBa2Cu3O7-delta films prepared under identical conditions. The pure films have smoother surfaces, while those of Zn-substituted films contain pinholes and outgrowths. Secondary phases and a-axis grains were observed in the Zn-substituted films. Y2O3 precipitates with typical dimensions of 50-100 Angstrom have been found in both pure and Zn-substituted samples. However, their density of about 10(23) m(-3), observed in the pure films, is significantly reduced in the Zn-substituted films when increasing the Zn concentration up to 4%.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos A1996UX28600006 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.325 Times cited 7 Open Access
Notes Approved (down)
Call Number UA @ lucian @ c:irua:15464 Serial 3257
Permanent link to this record