toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A. pdf  doi
openurl 
  Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
  Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 122 Issue 2 Pages 28003  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000435517300001 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access  
  Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved (down) Most recent IF: 1.957  
  Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034  
Permanent link to this record
 

 
Author Grieten, E.; Schalm, O.; Tack, P.; Bauters, S.; Storme, P.; Gauquelin, N.; Caen, J.; Patelli, A.; Vincze, L.; Schryvers, D. pdf  doi
openurl 
  Title Reclaiming the image of daguerreotypes: Characterization of the corroded surface before and after atmospheric plasma treatment Type A1 Journal article
  Year 2017 Publication Journal of cultural heritage Abbreviated Journal J Cult Herit  
  Volume Issue Pages  
  Keywords A1 Journal article; Art; History; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Technological developments such as atmospheric plasma jets for industry can be adapted for the conservation of cultural heritage. This application might offer a potential method for the removal or transformation of the corrosion on historical photographs. We focus on daguerreotypes and present an in-depth study of the induced changes by a multi-analytical approach using optical microscopy, scanning electron microscopy, different types of transmission electron microscopy and X-ray absorption fine structure. The H2-He afterglow removes S from an Ag2S or Cu2S layer which results in a nano-layer of metallic Ag or Cu on top of the deteriorated microstructure. In case the corrosion layer is composed of Cu-Ag-S compounds, our proposed setup can be used to partially remove the corrosion. These alterations of the corrosion results in an improvement in the readability of the photographic image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414230700007 Publication Date 2017-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.838 Times cited 9 Open Access Not_Open_Access  
  Notes The authors thank Herman Maes for the daguerreotypes used in this study. The authors also acknowledge the opportunity to perform XAFS measurements at the DUBBLE beamline of the ESRF storage ring under the approval of the advisory Committee (beam time nr. 26-01-990) and acknowledge the DUBBLE beamline staff for their support. They are also grateful for the financial support by the EU-FP7 grant PANNA no. 282998 and the STIMPRO project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT). Approved (down) Most recent IF: 1.838  
  Call Number EMAT @ emat @c:irua:144430 Serial 4625  
Permanent link to this record
 

 
Author Gauquelin, N.; Zhang, H.; Zhu, G.; Wei, J.Y.T.; Botton, G.A. url  doi
openurl 
  Title Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
  Year 2018 Publication AIP advances Abbreviated Journal Aip Adv  
  Volume 8 Issue 5 Pages 055022  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-delta(YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity. (C) 2018 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Melville, NY Editor  
  Language Wos 000433954000022 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 1 Open Access OpenAccess  
  Notes ; We are thankful to Julia Huang for FIB TEM sample preparation. This work is supported by NSERC (through Discovery Grants to GAB and JYTW) and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by McMaster University, the Canada Foundation for Innovation and NSERC. N.G. acknowledges H. Idrissi for useful discussions. ; Approved (down) Most recent IF: 1.568  
  Call Number UA @ lucian @ c:irua:152063 Serial 5013  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: