|   | 
Details
   web
Records
Author Chapman, D.; Gielis, J.
Title Gielis transformations for the audiovisual geometry database Type A1 Journal article
Year 2021 Publication Symmetry : culture and science Abbreviated Journal
Volume 32 Issue 2 Pages 177-180
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This publication introduces the audiovisual geometry database with Gielis transformations as initial records for a prototype of the database. A concise overview is given of the rationale behind the database and studying wave phenomena with Gielis transformations. First results on a form of timbral polyphony observed in Gielis curves and future work are briefly discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:180965 Serial 8004
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M.
Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
Year 2021 Publication Energy Storage Materials Abbreviated Journal
Volume 41 Issue Pages 69-107
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000685118300009 Publication Date 2021-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:178744 Serial 8045
Permanent link to this record
 

 
Author Aucar Boidi, N.; Fernández García, H.; Nunez-Fernandez, Y.; Hallberg, K.
Title In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction Type A1 Journal article
Year 2021 Publication Physical review research Abbreviated Journal
Volume 3 Issue 4 Pages 043213
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000736651500002 Publication Date 2021-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:184836 Serial 8073
Permanent link to this record
 

 
Author Gielis, J.; Ricci, P.E.; Tavkhelidze, I.
Title The Möbius phenomenon in Generalized Möbius-Listing surfaces and bodies, and Arnold's Cat phenomenon Type A1 Journal article
Year 2021 Publication Advanced Studies : Euro-Tbilisi Mathematical Journal Abbreviated Journal
Volume 14 Issue 4 Pages 17-35
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. Our research is motivated by this reduction of complexity. In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin. The Möbius phenomenon is important, since the process of cutting (or separation of zones in a GML body in general) then results in a single body, not in different, intertwined domains. In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenomenon to occur. Several examples are given to illustrate this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774655100002 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:183081 Serial 8258
Permanent link to this record
 

 
Author Gielis, J.
Title Phi-bonacci in Ancient Greece Type A1 Journal article
Year 2021 Publication Symmetry : culture and science Abbreviated Journal
Volume 32 Issue 1 Pages 25-40
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000643822700002 Publication Date 2021-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:178322 Serial 8376
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K.
Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
Year 2021 Publication Heritage science Abbreviated Journal
Volume 9 Issue 1 Pages 1-10
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000604977300001 Publication Date 2021-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:174948 Serial 8557
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S.
Title The apeirogon and dual numbers Type A1 Journal article
Year 2021 Publication Symmetry : culture and science Abbreviated Journal
Volume 32 Issue 2 Pages 157-160
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The richness, diversity, connection, depth and pleasure of studying symmetry continue to open doors. Here we report a connection between Coxeter's Apeirogon and the geometry associated with pictorial space, parabolic rotation and dual numbers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670122100011 Publication Date 2021-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:179759 Serial 8652
Permanent link to this record
 

 
Author Baij, L.; Liu, C.; Buijs, J.; Alvarez Martin, A.; Westert, D.; Raven, L.; Geels, N.; Noble, P.; Sprakel, J.; Keune, K.
Title Understanding and optimizing Evolon® CR for varnish removal from oil paintings Type A1 Journal article
Year 2021 Publication Heritage science Abbreviated Journal
Volume 9 Issue 1 Pages 155-17
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:183747 Serial 8707
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X.
Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
Year 2023 Publication JACS Au Abbreviated Journal JACS Au
Volume 3 Issue 5 Pages 1328-1336
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000981779300001 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved (up) Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved (up) Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Abduvokhidov, D.; Yusupov, M.; Shahzad, A.; Attri, P.; Shiratani, M.; Oliveira, M.C.; Razzokov, J.
Title Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules
Volume 13 Issue 7 Pages 1043
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001035160000001 Publication Date 2023-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research was funded by the Innovative Development Agency of the Republic of Uzbekistan, grant number FZ-2020092817. Approved (up) Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:198154 Serial 8803
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K.
Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal
Volume 378 Issue Pages 133159-10
Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000904590500008 Publication Date 2022-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:192381 Serial 8824
Permanent link to this record
 

 
Author Saeumel, I.; Ramirez, L.R.; Santolin, J.; Pintado, K.
Title A step to disentangle diversity patterns in Uruguayan grasslands : climatic seasonality, novel land-uses, and landscape context drive diversity of ground flora Type A1 Journal article
Year 2023 Publication Conservation Science and Practice Abbreviated Journal
Volume 5 Issue 9 Pages 1-20
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract South American grasslands contain extraordinary biodiversity and play a central role in the subsistence of regional agroecosystems. In recent decades, afforestation, followed by the soybean planting boom, have led to drastic land-use changes at the expense of grasslands. Impacts on local biodiversity have remained understudied. We explored the taxonomic richness and ss-diversity of plants of ground layer (excluding trees and shrubs) at different land uses, its interplay at regional scale with environmental heterogeneity, and at local scale with novel land cover types and landscape configurations. We conducted correlation, principal component, NDMS, and SDR analysis to explore variation of taxonomic richness, richness difference, replacement, and similarity of ground flora as response to environmental filters and land use change across Uruguay. We surveyed 160 plots distributed in 10 land cover types, that is, closed and open native forests, different grasslands, crops, orchards, and timber plantations. We observed overlaying regional patterns driven by seasonality of temperature and precipitation, and land cover shaping taxonomic richness at local scale. Landscape configuration affects diversity patterns of native ground flora, which seems to be sustained mainly by the “old growth grassland” species pool. Taxonomic richness of native species decreases with an increase of distance to grassland. Crops and grasslands harbor a higher number of native species in the ground flora than native forests and timber plantations. The introduction of exotics is driven mostly by crops or highly modified pastures. Diversity patterns only partially reflect the ecoregion concept. Expanding the perspective from conservation in purely natural ecosystems to measures conserving species richness in human-modified landscapes is a powerful tool against species loss in the Anthropocene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034673500001 Publication Date 2023-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2578-4854 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:198300 Serial 8828
Permanent link to this record
 

 
Author Espinosa, I.M.P.; Karaaslan, Y.; Sevik, C.; Martini, A.
Title Atomistic model of the anisotropic response of ortho-Mo₂C to indentation Type A1 Journal article
Year 2023 Publication AIP advances Abbreviated Journal
Volume 13 Issue 6 Pages 065125-65127
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Molybdenum carbide has various applications for which studying the material using classical molecular dynamics simulations would be valuable. Here, we develop an empirical potential within the Tersoff formalism using particle swarm optimization for the orthorhombic phase of Mo2C. The developed potential is shown to predict lattice constants, elastic properties, and equation of state results that are consistent with current and previously reported results from experiments and first principles calculations. We demonstrate the potential with simulations of indentation using multiple indenter sizes that load and unload in three different directions relative to the crystallographic lattice of orthorhombic Mo2C. Direction-dependent force-displacement trends are analyzed and explained in terms of the spatial distributions of stress and strain within the material during indentation. This study reveals the anisotropic elasticity of orthorhombic Mo2C and, more generally, provides researchers with a new empirical potential that can be used to explore the properties and behavior of the material going forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001016472500005 Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:198333 Serial 8834
Permanent link to this record
 

 
Author Liu, J.; Wang, C.; Yu, W.; Zhao, H.; Hu, Z.-Y.; Liu, F.; Hasan, T.; Li, Y.; Van Tendeloo, G.; Li, C.; Su, B.-L.
Title Bioinspired noncyclic transfer pathway electron donors for unprecedented hydrogen production Type A1 Journal article
Year 2023 Publication CCS chemistry Abbreviated Journal
Volume 5 Issue 6 Pages 1470-1482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron donors are widely exploited in visible-light photocatalytic hydrogen production. As a typical electron donor pair and often the first choice for hydrogen production, the sodium sulfide-sodium sulfite pair has been extensively used. However, the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process, strongly limiting the solar energy conversion efficiency. Here, we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons. Compared to the state-of-the-art electron donor pair Na2S-Na2SO3, these novel Na2S-NaH2PO2 and Na2S-NaNO2 electron donor pairs enable an unprecedented enhancement of up to 370% and 140% for average photocatalytic H-2 production over commercial CdS nanoparticles, and they are versatile for a large series of photocatalysts for visible-light water splitting. The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H-2 production. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001037091900008 Publication Date 2022-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:198409 Serial 8837
Permanent link to this record
 

 
Author Perreault, P.; Boruntea, C.-R.; Dhawan Yadav, H.; Portela Soliño, I.; Kummamuru, N.B.
Title Combined methane pyrolysis and solid carbon gasification for electrified CO₂-free hydrogen and syngas production Type A1 Journal article
Year 2023 Publication Energies Abbreviated Journal
Volume 16 Issue 21 Pages 7316-7320
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The coupling of methane pyrolysis with the gasification of a solid carbon byproduct provides CO2-free hydrogen and hydrogen-rich syngas, eliminating the conundrum of carbon utilization. Firstly, the various types of carbon that are known to result during the pyrolysis process and their dependencies on the reaction conditions for catalytic and noncatalytic systems are summarized. The synchronization of the reactions’ kinetics is considered to be of paramount importance for efficient performance. This translates to the necessity of finding suitable reaction conditions, carbon reactivities, and catalysts that might enable control over competing reactions through the manipulation of the reaction rates. As a consequence, the reaction kinetics of methane pyrolysis is then emphasized, followed by the particularities of carbon deposition and the kinetics of carbon gasification. Given the urgency in finding suitable solutions for decarbonizing the energy sector and the limited information on the gasification of pyrolytic carbon, more research is needed and encouraged in this area. In order to provide CO2-free hydrogen production, the reaction heat should also be provided without CO2. Electrification is one of the solutions, provided that low-carbon sources are used to generate the electricity. Power-to-heat, i.e., where electricity is used for heating, represents the first step for the chemical industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001103312100001 Publication Date 2023-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:200456 Serial 8842
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C.
Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
Year 2023 Publication Sensors Abbreviated Journal
Volume 23 Issue 13 Pages 6193-18
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033277900001 Publication Date 2023-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:198181 Serial 8857
Permanent link to this record
 

 
Author Beckwee, E.J.; Watson, G.; Houlleberghs, M.; Arenas Esteban, D.; Bals, S.; Van Der Voort, P.; Breynaert, E.; Martens, J.; Baron, G.V.; Denayer, J.F.M.
Title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Type A1 Journal article
Year 2023 Publication Heliyon Abbreviated Journal
Volume 9 Issue 7 Pages e17662-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056264100001 Publication Date 2023-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access OpenAccess
Notes E.J.B., G.W. and M.H. contributed equally to this work. M.H. acknowledges FWO for an FWO-SB fellowship. All authors acknowledge VLAIO for Moonshot funding (ARCLATH, n ? HBC.2019.0110, ARCLATH2, n ? HBC.2021.0254) . J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem) and department EWI for infrastructure investment via the Hermes Fund (AH.2016.134) . NMRCoRe acknowledges the Flemish government, department EWI for financial support as International Research Infrastructure (I001321N: Nuclear Magnetic Resonance Spectroscopy Platform for Molecular Water Research) . J.A.M. acknowledges the European Research Council (ERC) for an Advanced Research Grant under the European Union's Horizon 2020 research and innovation program under grant agreement No. 834134 (WATUSO) . S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N) . This project also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO) . Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:199249 Serial 8862
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S.
Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal article
Year 2024 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater
Volume 10 Issue 1 Pages 10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001138183000001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved (up) Most recent IF: NA
Call Number EMAT @ emat @c:irua:202714 Serial 8994
Permanent link to this record
 

 
Author Huang, L.; Ratkowsky, D.A.; Hui, C.; Gielis, J.; Lian, M.; Shi, P.
Title Inequality measure of leaf area distribution for a drought-tolerant landscape plant Type A1 Journal article
Year 2023 Publication Plants Abbreviated Journal
Volume 12 Issue 17 Pages 3143-11
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Measuring the inequality of leaf area distribution per plant (ILAD) can provide a useful tool for quantifying the influences of intra- and interspecific competition, foraging behavior of herbivores, and environmental stress on plants’ above-ground architectural structures and survival strategies. Despite its importance, there has been limited research on this issue. This paper aims to fill this gap by comparing four inequality indices to measure ILAD, using indices for quantifying household income that are commonly used in economics, including the Gini index (which is based on the Lorenz curve), the coefficient of variation, the Theil index, and the mean log deviation index. We measured the area of all leaves for 240 individual plants of the species Shibataea chinensis Nakai, a drought-tolerant landscape plant found in southern China. A three-parameter performance equation was fitted to observations of the cumulative proportion of leaf area vs. the cumulative proportion of leaves per plant to calculate the Gini index for each individual specimen of S. chinensis. The performance equation was demonstrated to be valid in describing the rotated and right shifted Lorenz curve, given that >96% of root-mean-square error values were smaller than 0.004 for 240 individual plants. By examining the correlation between any of the six possible pairs of indices among the Gini index, the coefficient of variation, the Theil index, and the mean log deviation index, the data show that these indices are closely related and can be used interchangeably to quantify ILAD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001065193100001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:199564 Serial 8886
Permanent link to this record
 

 
Author Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J.
Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
Year 2023 Publication Cell reports physical science Abbreviated Journal
Volume 4 Issue 7 Pages 101480-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001048074500001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:198299 Serial 8893
Permanent link to this record
 

 
Author Faust, V.; Boon, N.; Ganigué, R.; Vlaeminck, S.E.; Udert, K.M.
Title Optimizing control strategies for urine nitrification : narrow pH control band enhances process stability and reduces nitrous oxide emissions Type A1 Journal article
Year 2023 Publication Frontiers in environmental science Abbreviated Journal
Volume 11 Issue Pages 1275152-14
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Nitrification is well-suited for urine stabilization. No base dosage is required if the pH is controlled within an appropriate operating range by urine feeding, producing an ammonium-nitrate fertilizer. However, the process is highly dependent on the selected pH set-points and is susceptible to process failures such as nitrite accumulation or the growth of acid-tolerant ammonia-oxidizing bacteria. To address the need for a robust and reliable process in decentralized applications, two different strategies were tested: operating a two-position pH controller (inflow on/off) with a narrow pH control band at 6.20/6.25 (∆pH = 0.05, narrow-pH) vs. a wider pH control band at 6.00/6.50 (∆pH = 0.50, wide-pH). These variations in pH also cause variations in the chemical speciation of ammonia and nitrite and, as shown, the microbial production of nitrite. It was hypothesized that the higher fluctuations would result in greater microbial diversity and, thus, a more robust process. The diversity of nitrifiers was higher in the wide-pH reactor, while the diversity of the entire microbiome was similar in both systems. However, the wide-pH reactor was more susceptible to tested process disturbances caused by increasing pH or temperature, decreasing dissolved oxygen, or an influent stop. In addition, with an emission factor of 0.47%, the nitrous oxide (N2O) emissions from the wide-pH reactor were twice as high as the N2O emissions from the narrow-pH reactor, most likely due to the nitrite fluctuations. Based on these results, a narrow control band is recommended for pH control in urine nitrification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001087861500001 Publication Date 2023-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-665x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:199585 Serial 8909
Permanent link to this record
 

 
Author Scandura, G.; Eid, S.; Alnajjar, A.A.; Paul, T.; Karanikolos, G.N.; Shetty, D.; Omer, K.; Alqerem, R.; Juma, A.; Wang, H.; Arafat, H.A.; Dumee, L.F.
Title Photo-responsive metal-organic frameworks – design strategies and emerging applications in photocatalysis and adsorption Type A1 Journal article
Year 2023 Publication Materials Advances Abbreviated Journal
Volume 4 Issue 5 Pages 1258-1285
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stimuli-responsive metal-organic frameworks (MOFs) are highly versatile porous materials with the ability to respond to different external stimuli, including temperature, pressure, pH, and light. The MOF properties can switch reversibly under specific light irradiation, opening the doors to various applications. This review focuses on design strategies to obtain photo-responsive MOFs, namely (i) encapsulation of photo-switchable molecules as guests in MOF porous structures, (ii) fabrication of MOF composites, (iii) post-synthesis modification, and (iv) synthesis of MOFs with photo-responsive ligands. The most recent reports from the literature are herein reviewed and analyzed in terms of material chemistry and performance. Comparisons between the different strategies are performed and future challenges are discussed. The critical aspect of the fatigue of photo-responsive MOFs applied for prolonged cycling of irradiation is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000938241000001 Publication Date 2023-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:199418 Serial 8913
Permanent link to this record
 

 
Author De Micco, V.; Amitrano, C.; Mastroleo, F.; Aronne, G.; Battistelli, A.; Carnero-Diaz, E.; De Pascale, S.; Detrell, G.; Dussap, C.-G.; Ganigué, R.; Jakobsen, Ø.M.; Poulet, L.; Van Houdt, R.; Verseux, C.; Vlaeminck, S.E.; Willaert, R.; Leys, N.
Title Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space Type A1 Journal article
Year 2023 Publication NPJ microgravity Abbreviated Journal
Volume 9 Issue 1 Pages 69-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001093834300001 Publication Date 2023-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:199050 Serial 8916
Permanent link to this record
 

 
Author Gielis, J.
Title Simon Stevin as a central figure in the development of abstract algebra and generic programming Type A1 Journal article
Year 2023 Publication Symmetry : culture and science Abbreviated Journal
Volume 34 Issue 2 Pages 155-168
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Simon Stevin (1548-1620) is mainly known for the decimal system and his Clootkrans proof. His influence is also profound in infinitesimal calculus, mechanics, and even in abstract algebra and today’s conception of polynomials, algorithms, and generic programming. Here we review his influence as assessed in generic programming. According to Dr. Stepanov, one of the most influential researchers in generic programming, Stevin’s work on polynomials can be regarded as the essence of generic programming: an algorithm from one domain can be applied in another similar domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001068714100003 Publication Date 2023-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access: Available from 08.02.2024
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:198000 Serial 8929
Permanent link to this record
 

 
Author Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A.
Title Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules
Volume 13 Issue 9 Pages 1371
Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071356400001 Publication Date 2023-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research received no external funding. Approved (up) Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
Volume 1 Issue 6 Pages 1184-1191
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2771-9855 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved (up) Most recent IF: NA
Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
Year 2023 Publication Electrochemistry Abbreviated Journal
Volume 91 Issue 9 Pages 097003-97007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082818000001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:200340 Serial 9009
Permanent link to this record
 

 
Author Jorissen, B.; Covaci, L.; Partoens, B.
Title Comparative analysis of tight-binding models for transition metal dichalcogenides Type A1 Journal article
Year 2024 Publication SciPost physics core Abbreviated Journal
Volume 7 Issue 1 Pages 004-30
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We provide a comprehensive analysis of the prominent tight-binding (TB) models for transition metal dichalcogenides (TMDs) available in the literature. We inspect the construction of these TB models, discuss their parameterization used and conduct a thorough comparison of their effectiveness in capturing important electronic properties. Based on these insights, we propose a novel TB model for TMDs designed for enhanced computational efficiency. Utilizing MoS2 as a representative case, we explain why specific models offer a more accurate description. Our primary aim is to assist researchers in choosing the most appropriate TB model for their calculations on TMDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170769300001 Publication Date 2024-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:202983 Serial 9012
Permanent link to this record
 

 
Author McLachlan, G.; Majdak, P.; Reijniers, J.; Mihocic, M.; Peremans, H.
Title Dynamic spectral cues do not affect human sound localization during small head movements Type A1 Journal article
Year 2023 Publication Frontiers in neuroscience Abbreviated Journal
Volume 17 Issue Pages 1027827-10
Keywords A1 Journal article; Psychology; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract Natural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center). Seven normal-hearing subjects participated in a sound localization experiment in a virtual reality environment. Four acoustic cue stimulus conditions were presented (full spectrum, flattened spectrum, frozen spectrum, free-field) under three movement conditions (no movement, head rotations over the yaw axis and over the pitch axis). Localization performance was assessed using three metrics: lateral and polar precision error and front-back confusion rate. Analysis through mixed-effects models showed that even small yaw rotations provide a remarkable decrease in front-back confusion rate, whereas pitch rotations did not show much of an effect. Furthermore, MSS cues improved localization performance even in the presence of dITD cues. However, performance was similar between stimuli with and without dMSS cues. This indicates that human listeners utilize the MSS cues before the head moves, but do not rely on dMSS cues to localize sounds when utilizing small head movements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000938567400001 Publication Date 2023-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-4548; 1662-453x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:194507 Serial 9025
Permanent link to this record