|   | 
Details
   web
Records
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S.
Title Proof of concept of an upscaled photocatalytic multi-tube reactor : a combined modelling and experimental study Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 378 Issue 378 Pages 122038
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Three upscaled multi-tube photocatalytic reactors designed for integration into HVAC (Heating, Ventilation and Air Conditioning) systems were proposed and evaluated using a CFD modelling approach, with emphasis on the flow, irradiation and concentration distribution in the reactor and hence, photocatalytic performance. Based on the obtained insights, the best reactor design was selected, further characterized and improved by an additional proof of concept study and eventually converted into practice. Subsequently, the scaled-up prototype was experimentally tested according to the CEN-EN-16846-1 standard (2017) for volatile organic compound (VOC) removal by an external scientific research center. The combined modelling and experimental approach used in this work, leads to essential insights into the design and assessment of photocatalytic reactors. Therefore, this study provides an essential step towards the optimization and commercialization of photocatalytic reactors for HVAC applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487764800011 Publication Date 2019-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved (up) Most recent IF: 6.216
Call Number UA @ admin @ c:irua:162190 Serial 5986
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Hereijgers, J.; Breugelmans, T.; Cool, P.; Bogaerts, A.
Title How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 405 Issue Pages 126618
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract DBD plasma reactors are commonly used in a static ‘one inlet – one outlet’ design that goes against reactor design principles for multi-component reactions, such as dry reforming of methane (DRM). Therefore, in this paper we have developed a novel reactor design, and investigated how the shape and size of the reaction zone, as well as gradual gas addition, and the method of mixing CO2 and CH4 can influence the conversion and product com­ position of DRM. Even in the standard ‘one inlet – one outlet’ design, the direction of the gas flow (i.e. short or long path through the reactor, which defines the gas velocity at fixed residence time), as well as the dimensions of the reaction zone and the power delivery to the reactor, largely affect the performance. Using gradual gas addition and separate plasma activation zones for the individual gases give increased conversions within the same operational parameters, by optimising mixing ratios and kinetics. The choice of the main (pre-activated) gas and the direction of gas flow largely affect the conversion and energy cost, while the gas inlet position during separate addition only influences the product distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000626511800005 Publication Date 2020-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access OpenAccess
Notes Interreg; Flanders; FWO; University of Antwerp; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund 13 for Scientific Research (FWO; grant number: G.0254.14N), and an IOFSBO (SynCO2Chem) project from the University of Antwerp. Approved (up) Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:170609 Serial 6410
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A.
Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 405 Issue Pages 126630
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000621197700003 Publication Date 2020-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access OpenAccess
Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved (up) Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P.
Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 410 Issue Pages 128234
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623394200004 Publication Date 2021-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 15 Open Access OpenAccess
Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved (up) Most recent IF: 6.216
Call Number EMAT @ emat @c:irua:174591 Serial 6662
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S.
Title Development of a novel type activated carbon fiber filter for indoor air purification Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 417 Issue Pages 128109
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel type of activated carbon fiber filter was developed for indoor air purification. The filter is equipped with electrodes for thermo-electrical regeneration at the point of saturation. The electrodes are arranged in such a way that the filter forms a pleated structure with an electrode in the tip of each pleat. This allows for a uniform temperature distribution on the filter surface during the regeneration process and the pleated structure reduces the overall pressure drop across the filter. The latter was validated by Computational Fluid Dynamics, using Darcy-Forchheimer parameters derived in previous work. The CFD model was further used to perform a virtual sensitivity study in search for the optimal ACF filter design by varying the pleat length, pleat height and filter thickness. Finally, adsorption and desorption properties were investigated with acetaldehyde and toluene as model compounds. Freundlich and Langmuir adsorption parameters, derived in previous work were successfully validated with a Multiphysics model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000653229500132 Publication Date 2020-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 6.216
Call Number UA @ admin @ c:irua:174105 Serial 7800
Permanent link to this record
 

 
Author Smeulders, G.; van Oers, C.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P.
Title Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 175 Issue Pages 585-591
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract In this study the effects of the heating rate and heating time on the formation of crystal-like benzene bridged periodic mesoporous organosilicas (PMOs) are investigated. The time needed to heat up an autoclave during the hydrothermal treatment has shown to be crucial in the synthesis of PMOs, while the total duration of heating gave rise to only minor differences. By choosing a smart heating profile, superior PMO materials can be obtained in a short time. Different heating profiles in a range from one minute to one hour are adopted by microwave equipment and compared with conventional heating methods. The heating rate has a large influence on the porosity characteristics and the uniformity of the obtained particles. Moreover, two new alternative synthetic strategies to adopt the smart heating profile are presented, in order to give some possible solutions for the expensive microwave equipment.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000297875900069 Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 7 Open Access
Notes Fwo; Goa-Bof Approved (up) Most recent IF: 6.216; 2011 IF: 3.461
Call Number UA @ lucian @ c:irua:93630 Serial 3044
Permanent link to this record
 

 
Author Verbruggen, S.W.; Ribbens, S.; Tytgat, T.; Hauchecorne, B.; Smits, M.; Meynen, V.; Cool, P.; Martens, J.A.; Lenaerts, S.
Title The benefit of glass bead supports for efficient gas phase photocatalysis : case study of a commercial and a synthesised photocatalyst Type A1 Journal article
Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 174 Issue 1 Pages 318-325
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the field of photocatalytic air purification, the immobilisation of catalyst particles on support surfaces without loss of photon efficiency is an important challenge. Therefore, an immobilisation method involving a one-step suspension coating of pre-synthesised photocatalysts on glass beads was applied. The various benefits are exemplified in the gas phase photodegradation of ethylene. Coating of glass beads is easy, fast, cheap and offers a more efficient alternative to bulk catalyst pellets. Furthermore, this coating procedure allows to use porous, pre-synthesised catalysts to their full potential, as the surface area and morphology of the initial powder is barely altered after coating, in strong contrast to pelletising. With this technique it became possible to study the gas phase photocatalytic activity of commercial titanium dioxide, trititanate nanotubes and mixed phase anatase/trititanate nanotubes in a packed bed reactor towards the degradation of ethylene without changing the catalyst properties. Coating of glass beads with the photocatalyst revealed the superior activity of the as-prepared nanotubes, compared to TiO2 Aerolyst® 7710 in gaseous phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296950300041 Publication Date 2011-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 39 Open Access
Notes ; The author wishes to acknowledge the Research Foundation of Flanders (FWO) for the financial support. Evonik is greatly thanked for supplying the TiO<INF>2</ INF> Aerolyst (R) 7710 pellets. ; Approved (up) Most recent IF: 6.216; 2011 IF: 3.461
Call Number UA @ admin @ c:irua:93364 Serial 5929
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 209 Issue Pages 494-500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000311190500058 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved (up) Most recent IF: 6.216; 2012 IF: 3.473
Call Number UA @ lucian @ c:irua:105185 Serial 2609
Permanent link to this record
 

 
Author Smits, M.; Chan, C. kit; Tytgat, T.; Craeye, B.; Costarramone, N.; Lacombe, S.; Lenaerts, S.
Title Photocatalytic degradation of soot deposition : self-cleaning effect on titanium dioxide coated cementitious materials Type A1 Journal article
Year 2013 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 222 Issue Pages 411-418
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Diesel soot emissions deteriorate the appearance of architectural building materials by soot fouling. This soot deposition devalue the aesthetic value of the building. A solution to counteract this problem is applying titanium dioxide on building materials. TiO2 can provide air-purifying and self-cleaning properties due to its photocatalytic activity. In literature, photocatalytic soot oxidation is observed on glass or silicon substrates. However, degradation of soot by photocatalysis was not yet investigated on cementitious samples (mortar, concrete) although it is one of the most frequently used building materials. In this study, photocatalytic soot oxidation by means of TiO2 coated cementitious samples is addressed. The soot removal capacity of four types of TiO2 layers, coated on mortar samples, is evaluated by means of two detection methods. The first method is based on colorimetric measurements, while the second method uses digital image processing to calculate the area of soot coverage. The experimental data revealed that cementitious materials coated with commercially available TiO2 exhibited self-cleaning properties as it was found that all coated samples were able to remove soot. The P25 coating gave the best soot degradation performance, while the Eoxolit product showed the slowest soot degradation rate. In addition, gas chromatography measurements in a closed chamber experiment with P25 confirmed that complete mineralization of about 60% of the soot was obtained within 24 hours since CO2 was the sole observed oxidation product. Due to its realistic approach, this study proves that photocatalytic soot removal on TiO2 coated cementitious surfaces is possible in practice, which is an important step towards the practical application of self-cleaning building materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319528900046 Publication Date 2013-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 43 Open Access
Notes ; This work was supported by a PhD grant (M. Smits) from the University of Antwerp, a PhD grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and the exchange program Tournesol (Project T2012.05) financed by the Flemish government. ; Approved (up) Most recent IF: 6.216; 2013 IF: 4.058
Call Number UA @ admin @ c:irua:106519 Serial 5979
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S.
Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 262 Issue Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347577700001 Publication Date 2014-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved (up) Most recent IF: 6.216; 2015 IF: 4.321
Call Number UA @ admin @ c:irua:119724 Serial 5927
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Seftel, E.M.; Gavrila, R.; Suchea, M.; Batuk, M.; Mertens, M.; Hadermann, J.; Cool, P.
Title Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light Type A1 Journal article
Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 820 Issue Pages 153403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract A series of mixed nanocomposite materials was synthetized, containing a Ferrite phase type Zn1-xNixFe2O4 and a Freudenbergite phase type Na2Fe2Ti6O16, where x = 0; 0.2; 0.4; 0.6; 0.8; 1. The choice for this combination is based on the good adsorption properties of Freudenbergite for dye molecules, and the small bandgap energy of Ferrite spinel, allowing activation of the catalysts under visible light irradiation. A two steps synthesis protocol was used to obtain the smart-removal nanocomposites. Firstly, the spinel structure was obtained via the co-precipitation route followed by the addition of the Ti-source and formation of the Freudenbergite system. The role of cations on the formation mechanism and an interesting interchange of cations between spinel and Freudenbergite structures was clarified by a TEM study. Part of the Ti4+ penetrated the spinel structure and, at the same time, part of the Fe3+ formed the Freudenbergite system. The photocatalytic activity was studied under visible light, reaching for the best catalysts a 67% and 40% mineralization degree for methylene blue and rhodamine 6G respectively, after 6 h of irradiation. In the same conditions, the well-known commercial P25 (Degussa) managed to mineralize only 12% and 3% of methylene blue and rhodamine 6G, respectively. Due to the remarkable magnetic properties of Ferrites, a convenient recovery and reuse of the catalysts is possible after the photocatalytic tests. Based on the excellent catalytic performance of the nanocomposites under visible light and their ease of separation out of the solution after the catalytic reaction, the newly developed composite catalysts are considered very effective for wastewater treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507854700130 Publication Date 2019-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the FWO-Flanders (project nr. G038215N) for financial support. Approved (up) Most recent IF: 6.2; 2020 IF: 3.133
Call Number EMAT @ emat @c:irua:166447 Serial 6342
Permanent link to this record
 

 
Author Chen, C.; Sang, X.; Cui, W.; Xing, L.; Nie, X.; Zhu, W.; Wei, P.; Hu, Z.-Y.; Zhang, Q.; Van Tendeloo, G.; Zhao, W.
Title Atomic-resolution fine structure and chemical reaction mechanism of Gd/YbAl₃ thermoelectric-magnetocaloric heterointerface Type A1 Journal article
Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 831 Issue Pages 154722-154728
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thermoelectric materials and magnetocaloric materials are promising candidates for solid-state refrigeration applications. The combination of thermoelectric and magnetocaloric effects could potentially lead to more efficient refrigeration techniques. We designed and successfully synthesized Gd/YbAl3 composites using a YbAl3 matrix with good low-temperature thermoelectric performance and Gd microspheres with a high magnetocaloric performance, using a sintering condition of 750 degrees C and 50 MPa. Using aberration-corrected scanning transmission electron microscopy (STEM), it was discovered that the heterointerface between Gd and YbAl 3 is composed of five sequential interfacial layers: GdAl3, GdAl2, GdAl, Gd3Al2, and Gd3Al. The diffusion of Al atoms plays a crucial role in the formation of these interfacial layers, while Yb or Gd do not participate in the interlayer diffusion. This work provides the essential structural information for further optimizing and designing high-performance composites for thermoelectric-magnetocaloric hybrid refrigeration applications. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000531727900005 Publication Date 2020-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by National Natural Science Foundation of China (Nos. 11834012, 51620105014, 91963207, 91963122, 51902237) and National Key R&D Program of China (No. 2018YFB0703603, 2019YFA0704903, SQ2018YFE010905). EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX). ; Approved (up) Most recent IF: 6.2; 2020 IF: 3.133
Call Number UA @ admin @ c:irua:169447 Serial 6455
Permanent link to this record
 

 
Author Baez, J.F.; Compton, M.; Chahrati, S.; Cánovas, R.; Blondeau, P.; Andrade, F.J.
Title Controlling the mixed potential of polyelectrolyte-coated platinum electrodes for the potentiometric detection of hydrogen peroxide Type A1 Journal article
Year 2020 Publication Analytica Chimica Acta Abbreviated Journal Anal Chim Acta
Volume 1097 Issue Pages 204-213
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of a Pt electrode coated with a layer of Nafion has been described in previous works as an attractive way to perform the potentiometric detection of hydrogen peroxide. Despite of the attractive features of this approach, the nature of the non-Nernstian response of this system was not properly addressed. In this work, using a mixed potential model, the open circuit potential of the Pt electrode is shown to be under kinetic control of the oxygen reduction reaction (ORR). It is proposed that hydrogen peroxide acts as an oxygenated species that blocks free sites on the Pt surface, interfering with the ORR. Therefore, the effect of the polyelectrolyte coating can be understood in terms of the modulation of the factors that affects the kinetics of the ORR, such as an increase of the H+ concentration, minimization of the effect of the spectator species, etc. Because of the complexity and the lack of models that accurately describe systems with practical applications, this work is not intended to provide a mechanistic but rather a phenomenological view on problem. A general framework to understand the factors that affect the potentiometric response is provided. Experimental evidence showing that the use of polyelectrolyte coatings are a powerful way to control the mixed potential open new ways for the development of robust and simple potentiometric sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record
Impact Factor 6.2 Times cited Open Access
Notes Approved (up) Most recent IF: 6.2; 2020 IF: 4.95
Call Number UA @ admin @ c:irua:184381 Serial 7731
Permanent link to this record
 

 
Author Surmenev, R.A.; Grubova, I.Y.; Neyts, E.; Teresov, A.D.; Koval, N.N.; Epple, M.; Tyurin, A.I.; Pichugin, V.F.; Chaikina, M.V.; Surmeneva, M.A.
Title Ab initio calculations and a scratch test study of RF-magnetron sputter deposited hydroxyapatite and silicon-containing hydroxyapatite coatings Type A1 Journal article
Year 2020 Publication Surfaces and interfaces Abbreviated Journal
Volume 21 Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A crucial property for implants is their biocompatibility. To ensure biocompatibility, thin coatings of hydroxyapatite (HA) are deposited on the actual implant. In this study, we investigate the effects of the addition of silicate anions to the structure of hydroxyapatite coatings on their adhesion strength via a scratch test and ab initio calculations. We find that both the grain size and adhesion strength decrease with the increase in the silicon content in the HA coating (SiHA). The increase in the silicon content to 1.2 % in the HA coating leads to a decrease in the average crystallite size from 28 to 21 nm, and in the case of 4.6 %, it leads to the formation of an amorphous or nanocrystalline film. The decreases in the grain and crystallite sizes lead to peeling and destruction of the coating from the titanium substrate at lower loads. Further, our ab initio simulations demonstrate an increased number of molecular bonds at the amorphous SiHA-TiO2 interface. However, the experimental results revealed that the structure and grain size have more pronounced effects on the adhesion strength of the coatings. In conclusion, based on the results of the ab initio simulations and the experimental results, we suggest that the presence of Si in the form of silicate ions in the HA coating has a significant impact on the structure, grain size, and number of molecular bonds at the interface and on the adhesion strength of the SiHA coating to the titanium substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000697616300009 Publication Date 2020-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access
Notes Approved (up) Most recent IF: 6.2; 2020 IF: NA
Call Number UA @ admin @ c:irua:181685 Serial 7400
Permanent link to this record
 

 
Author Reynaert, S.; Vienne, A.; de Boeck, H.J.; D'Hose, T.; Janssens, I.; Nijs, I.; Portillo-Estrada, M.; Verbruggen, E.; Vicca, S.
Title Basalt addition improves the performance of young grassland monocultures under more persistent weather featuring longer dry and wet spells Type A1 Journal article
Year 2023 Publication Agricultural and forest meteorology Abbreviated Journal
Volume 340 Issue 1 Pages 109610
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Global warming is altering the intra-annual variability of precipitation patterns in the mid-latitudes, including a shift towards longer dry and wet spells compared to historic averages. Such fluctuations will likely alter soil water and nutrient dynamics of managed ecosystems which could negatively influence their functioning (e.g., productivity and fodder quality). Here, we investigated whether basalt addition could attenuate effects of increasingly persistent precipitation regimes (PR) on two agricultural grassland monocultures differing in drought resistance (low: Lolium perenne (LP) vs high: Festulolium (FL)) and digestibility (high: LP, low: FL), while improving soil C sequestration. In total, 32 experimental mesocosms were subjected to either a low (1-day wet/ dry alternation) or a highly (30-day wet/dry alternation) persistent PR over 120 days, keeping total precipitation equal. In half of these mesocosms, we mixed basalt with the top 20 cm soil layer at a rate of 50 t ha-1. Overall, 30-day PR increased average water availability resulting in improved aboveground biomass and shoot digestibility for both species, in spite of elevated physiological stress. These PR also increased shoot Si, K, N and C but reduced Ca accumulation. Basalt addition generally increased soil Al, Ni, Mg, Ca, P, K and Si availability without altering root biomass or total soil carbon. Moreover, differences in root N content and C:N ratio between species were reduced. Interestingly, basalt modified the PR effects on productivity. Within 30-day PR, basalt stimulated aboveground biomass (& PLUSMN;14%) and root Si and K contents without altering plant digestibility, palatability, crude protein content or Ni/Al content. These results indicate that basalt can stimulate grassland productivity and soil nutrient availability under more persistent PR without negatively affecting fodder quality. Hence, basalt application may improve the performance of young temperate grassland monocultures under climate change, though dry soil conditions may limit effects on soil C sequestration during summer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001051084500001 Publication Date 2023-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access
Notes Approved (up) Most recent IF: 6.2; 2023 IF: 3.887
Call Number UA @ admin @ c:irua:199204 Serial 9189
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L.
Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
Year 2023 Publication Surfaces and interfaces Abbreviated Journal
Volume 36 Issue Pages 102602
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000916285000001 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved (up) Most recent IF: 6.2; 2023 IF: NA
Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V.
Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
Year 2023 Publication Surfaces and interfaces Abbreviated Journal
Volume 36 Issue Pages 102516-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000901694900001 Publication Date 2022-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 6.2; 2023 IF: NA
Call Number UA @ admin @ c:irua:193502 Serial 7327
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr.
Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal article
Year 2023 Publication FlatChem Abbreviated Journal FlatChem
Volume 39 Issue Pages 100506
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000990342500001 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved (up) Most recent IF: 6.2; 2023 IF: NA
Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E.
Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
Year 2024 Publication Surfaces and interfaces Abbreviated Journal
Volume 46 Issue Pages 104169-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001206950300001 Publication Date 2024-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access
Notes Approved (up) Most recent IF: 6.2; 2024 IF: NA
Call Number UA @ admin @ c:irua:205977 Serial 9150
Permanent link to this record
 

 
Author Percebom, A.M.M.; Giner-casares, J.J.; Claes, N.; Bals, S.; Loh, W.; Liz-Marzan, L.M.
Title Janus Gold Nanoparticles Obtained via Spontaneous Binary Polymer Shell Segregation Type A1 Journal article
Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 52 Issue 52 Pages 4278-4281
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Janus gold nanoparticles are of high interest because they allow directed self-assembly and display plasmonic properties. We succeeded in coating gold nanoparticles with two different polymers that form a Janus shell. The spontaneous segregation of two immiscible polymers at the surface of the nanoparticles was verified by NOESY NMR and most importantly by electron microscopy analysis in two and three dimensions. The Janus structure is additionally shown to affect the aggregation behavior of the nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372176500003 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 44 Open Access OpenAccess
Notes Funding is acknowledged from the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom). A.M.P. thanks the Brazilian FAPESP for financial support (FAPESP 2012/21930-3 and 2014/01807-8) and J.J. G.-C. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship (#JCI-2012-12517). We thank Ada Herrero Ruiz and Daniel Padró for help with NMR measurements, Malou Henriksen for cell experiments and the Brazilian Synchrotron Laboratory (LNLS) for allocation of SAXS beamtime.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved (up) Most recent IF: 6.319
Call Number c:irua:133168 Serial 4009
Permanent link to this record
 

 
Author Ying, J.; Hu, Z.-Y.; Yang, X.-Y.; Wei, H.; Xiao, Y.-X.; Janiak, C.; Mu, S.-C.; Tian, G.; Pan, M.; Van Tendeloo, G.; Su, B.-L.
Title High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability Type A1 Journal article
Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 52 Issue 52 Pages 8219-8222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A facile high-viscosity-solvent method is presented to synthesize PtPd bimetallic nanocrystals highly dispersed in different mesostructures (2D and 3D structures), porosities (large and small pore sizes), and compositions (silica and carbon). Further, highly catalytic activity, stability and durability of the nanometals have been proven in different catalytic reactions.
Address State Key Laboratory Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China. xyyang@whut.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000378715400006 Publication Date 2016-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 19 Open Access
Notes This work was supported by NFSC (51472190 and 51503166), ISTCP (2015DFE52870), PCSIRT (IRT15R52) of China, and the Integrated Infrastructure Initiative of EU (312483-ESTEEM2).; esteem2jra4 Approved (up) Most recent IF: 6.319
Call Number c:irua:134660 c:irua:134660 Serial 4110
Permanent link to this record
 

 
Author Wang, L.; Hu, Z.-Y.; Yang, X.-Y.; Zhang, B.-B.; Geng, W.; Van Tendeloo, G.; Su, B.-L.
Title Polydopamine nanocoated whole-cell asymmetric biocatalysts Type A1 Journal article
Year 2017 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 53 Issue 49 Pages 6617-6620
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Our whole-cell biocatalyst with a polydopamine nanocoating shows high catalytic activity (5 times better productivity than the native cell) and reusability (84% of the initial yield after 5 batches, 8 times higher than the native cell) in asymmetric reduction. It also integrates with titania, silica, and magnetic nanoparticles for multi-functionalization.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000403572100018 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 15 Open Access OpenAccess
Notes ; This work was supported by PCSIRT (IRT_15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033), CNPC (PPC2016007) and the China Scholarship Council (CSC). We thank Prof. Damien Hermand (URPhyM in UNamur) for help with cell culture, Ms Noelle Ninane (Narilis in UNamur) for help with CLSM characterization and Ms Siming Wu (WHUT) for help with magnetic property characterization. ; Approved (up) Most recent IF: 6.319
Call Number UA @ lucian @ c:irua:144185 Serial 4681
Permanent link to this record
 

 
Author González-Rubio, G.; de Oliveira, T.M.; Altantzis, T.; La Porta, A.; Guerrero-Martínez, A.; Bals, S.; Scarabelli, L.; Liz-Marzán, L.M.
Title Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth Type A1 Journal article
Year 2017 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 53 Issue 53 Pages 11360-11363
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Oxidative etching was used to produce gold seeds of different sizes and crystal habits. Following detailed characterization, the seeds were grown under different conditions. Our results bring new insights toward understanding the effect of size and crystallinity on the growth of anisotropic particles, whilst identifying guidelines for the optimisation of new synthetic protocols of predesigned seeds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412814900019 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 29 Open Access OpenAccess
Notes This work was funded by the Spanish MINECO (grant # MAT2013-46101-R, Ramon y Cajal fellowship to A. G.-M. and FPI fellowship to G. G.-R.). Financial support is acknowledged from the European Commission (EUSMI, 731019). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). T. A. acknowledges a postdoctoral grant from Research Foundation Flanders (FWO, Belgium). ECAS_Sara (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved (up) Most recent IF: 6.319
Call Number EMAT @ emat @c:irua:146101UA @ admin @ c:irua:146101 Serial 4734
Permanent link to this record
 

 
Author Sanchis-Gual, R.; Susic, I.; Torres-Cavanillas, R.; Arenas-Esteban, D.; Bals, S.; Mallah, T.; Coronado-Puchau, M.; Coronado, E.
Title The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles Type A1 Journal article
Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun
Volume 57 Issue 15 Pages 1903-1906
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000620719300011 Publication Date 2021-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 5 Open Access OpenAccess
Notes European Commission, COST Action MOLSPIN CA15128 ERC Advanced Grant Mol-2D 788222 ERC Consolidator Grant REALNANO 815128 Grant Agreement No. 731019 (EUSMI) ; Ministry of Education and Science of the Russian Federation, No. 14.W03.31.0001 ; Ministerio de Ciencia, Innovación y Universidades, Maria de Maeztu CEX2019-000919-M Project MAT2017-89993-R ; Generalitat Valenciana, PROMETEO/2017/066 iDiFEDER/2018/061 ; sygma; Approved (up) Most recent IF: 6.319
Call Number EMAT @ emat @c:irua:176542 Serial 6702
Permanent link to this record
 

 
Author Bartholomeeusen, E.; De Cremer, G.; Kennes, K.; Hammond, C.; Hermans, I.; Lu, J.-B.; Schryvers, D.; Jacobs, P.A.; Roeffaers, M.B.J.; Hofkens, J.; Sels, B.F.; Coutino-Gonzalez, E.
Title Optical encoding of luminescent carbon nanodots in confined spaces Type A1 Journal article
Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun
Volume 57 Issue 90 Pages 11952-11955
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000711122000001 Publication Date 2021-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 6.319
Call Number UA @ admin @ c:irua:184147 Serial 6876
Permanent link to this record
 

 
Author Colomer, J.-F.; Bister, G.; Willems, I.; Konya, Z.; Fonseca, A.; Van Tendeloo, G.; Nagy, J.B.
Title Synthesis of single wall carbon nanotubes by catalytic decomposition of hydrocarbons Type A1 Journal article
Year 1999 Publication Chemical communications Abbreviated Journal Chem Commun
Volume Issue Pages 1343-1344
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000082398800037 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 110 Open Access
Notes Approved (up) Most recent IF: 6.319; 1999 IF: 3.477
Call Number UA @ lucian @ c:irua:29719 Serial 3459
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Launois, P.; Van Tendeloo, G.; Lucas, A.A.; Lambin, P.
Title Bundles of identical double-walled carbon nanotubes Type A1 Journal article
Year 2004 Publication Chemical communications Abbreviated Journal Chem Commun
Volume Issue 22 Pages 2592-2593
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000225375100035 Publication Date 2004-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 13 Open Access
Notes Approved (up) Most recent IF: 6.319; 2004 IF: 3.997
Call Number UA @ lucian @ c:irua:54875 Serial 263
Permanent link to this record
 

 
Author Meynen, V.; Beyers, E.; Cool, P.; Vansant, E.F.; Mertens, M.; Weyten, H.; Lebedev, O.I.; Van Tendeloo, G.
Title Post-synthesis deposition of V-Zeolitic nanoparticles in SBA-15 Type A1 Journal article
Year 2004 Publication Chemical communications Abbreviated Journal Chem Commun
Volume Issue Pages 898-890
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000221124300084 Publication Date 2004-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 22 Open Access
Notes Approved (up) Most recent IF: 6.319; 2004 IF: 3.997
Call Number UA @ lucian @ c:irua:44934 Serial 2684
Permanent link to this record
 

 
Author Verlooy, P.; Aerts, A.; Lebedev, O.I.; Van Tendeloo, G.; Kirschhock, C.; Martens, J.A.
Title Synthesis of highly stable pure-silica thin-walled hexagonally ordered mesoporous material Type A1 Journal article
Year 2009 Publication Chemical communications Abbreviated Journal Chem Commun
Volume Issue 28 Pages 4287-4289
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexagonally ordered mesoporous silica with a very narrow mesopore size distribution and exceptionally high stability paired with unusually thin pore walls was prepared using piperidine and cetyltrimethylammonium bromide.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000267808000040 Publication Date 2009-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 17 Open Access
Notes Approved (up) Most recent IF: 6.319; 2009 IF: 5.504
Call Number UA @ lucian @ c:irua:77684 Serial 3457
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Ke, X.; Vosch, T.; Van Tendeloo, G.; Baron, G.V.; Jacobs, P.A.; Denayer, J.F.M.; Sels, B.F.
Title Molecular sieve properties of mesoporous silica with intraporous nanocarbon Type A1 Journal article
Year 2010 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 46 Issue 6 Pages 928-930
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biporous carbonsilica materials (CSM) with molecular sieve properties and high sorption capacity were developed by synthesizing nano-sized carbon crystallites in the mesopores of Al-MCM-41.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000274070800024 Publication Date 2009-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 21 Open Access
Notes Fwo; Iap Approved (up) Most recent IF: 6.319; 2010 IF: 5.787
Call Number UA @ lucian @ c:irua:80994 Serial 2182
Permanent link to this record