toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M.
  Title Valley filtering in graphene due to substrate-induced mass potential Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 29 Issue 21 Pages 215502
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The interaction of monolayer graphene with specific substrates may break its sublattice symmetry and results in unidirectional chiral states with opposite group velocities in the different Dirac cones (Zarenia et al 2012 Phys. Rev. B 86 085451). Taking advantage of this feature, we propose a valley filter based on a transversal mass kink for low energy electrons in graphene, which is obtained by assuming a defect region in the substrate that provides a change in the sign of the substrate-induced mass and thus creates a non-biased channel, perpendicular to the kink, for electron motion. By solving the time-dependent Schrodinger equation for the tight-binding Hamiltonian, we investigate the time evolution of a Gaussian wave packet propagating through such a system and obtain the transport properties of this graphene-based substrate-induced quantum point contact. Our results demonstrate that efficient valley filtering can be obtained, provided: (i) the electron energy is sufficiently low, i.e. with electrons belonging mostly to the lowest sub-band of the channel, and (ii) the channel length (width) is sufficiently long (narrow). Moreover, even though the transmission probabilities for each valley are significantly affected by impurities and defects in the channel region, the valley polarization in this system is shown to be robust against their presence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000400092700002 Publication Date 2017-04-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 15 Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:152636 Serial 8730
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Nielsen, P.; Horckmans, L.; Geurts, R.; Vrancken, K.C.; Quaghebeur, M.
  Title Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material Type A1 Journal article
  Year 2016 Publication Journal of cleaner production Abbreviated Journal
  Volume 117 Issue Pages 221-228
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract This study focuses on the recycling of stainless steel (SS) slags containing about 1.2 wt% of chromium (Cr). The selective recovery of Cr from SS slag by a hydrometallurgical method (alkaline pressure leaching) was investigated. Leaching experiments were carried out based on 2(4-1) factorial design of experiment (DOE) with the following parameters: NaOH concentration, temperature, leaching time, and mechanical activation (MA). Results show that temperature and MA are the most influencing factors for an enhanced Cr leaching. The maximum Cr leaching was 46% at 1 M NaOH, 240 degrees C, 6 h, MA 30 min, while the matrix material was dissolved only to a limited extent (Al 2.88%, Si 0.12%, Ca 0.05%). After Cr leaching followed by alkali washing, a carbonation treatment is proposed to stabilize the remaining Cr in the matrix material and make the subsequent recycling of the matrix material as a construction material possible. (C) 2016 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000371552200025 Publication Date 2016-01-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:132432 Serial 8731
Permanent link to this record
 

 
Author Christis, M.; Geerken, T.; Vercalsteren, A.; Vrancken, K.C.M.
  Title Value in sustainable materials management strategies for open economies case of Flanders (Belgium) Type A1 Journal article
  Year 2015 Publication Resources, conservation and recycling Abbreviated Journal
  Volume 103 Issue Pages 110-124
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Sustainable Materials Management (SMM) strategies, such as reuse, recycling and energy recovery aim, to capture more of the embedded resource or material value in products and waste streams. Reuse, recycling and energy recovery are existing activities in every society but they are poorly reflected in official statistics. Reaching higher levels of reuse, recycling and energy recovery may provide economic and environmental opportunities (i.e., in terms of GDP, jobs, reduced impacts), but not all options will have a net win-win-win property in practice, as they reduce the need for producing new commodities. In open economies, many primary resources, components and products are imported from abroad, and many goods produced are exported abroad. This paper describes a top-down methodology for estimating the substitution potential of intensifying specific SMM-strategies and material efficiency strategies. We combined both regional and multi-regional EE-IO (environmentally extended input-output) models to link industrial sectors to SMM-strategies. Our method enables us to compare the different SMM and material efficiency strategies in terms of the maximum available budgets for reaching them on a break even basis, maximum savings in global warming emissions and substituted employment effects, both through a regional and global perspective. We add a case on Flanders (Northern region in Belgium) to illustrate the methodology. Flanders is currently developing a policy for SMM. Selecting new regional actions for a Sustainable Materials Management policy can benefit from a good understanding of the international entangled value chains. It is important to understand how much of the chain is within reach of domestic policies and also to assess the consequences in terms of potential winners and losers, regarding GDP, jobs and environmental impacts, both domestically and abroad. We illustrated the potential outcomes for Flanders from four generic SMM-strategies: energy recovery, food waste prevention, recycling and reuse. From a strict regional self-interest perspective, it is preferable to substitute foreign value chains with local economic activities. Reuse creates by far the largest budget for new activities to realize the strategy (31.2% of Flemish GDP compared to 8.3% for food waste prevention, 6.2% for energy recovery and 4.2% for recycling). All four strategies have similar and significant potentials to reduce greenhouse gas emissions. However, food waste prevention and reuse have higher potentials to reduce Flemish territorial GHG-emissions. From a pure Flemish employment perspective, the energy recovery and recycling strategies could replace the fewest Flemish jobs, and from a global perspective, all strategies most likely imply losses of jobs abroad. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000362618600011 Publication Date 2015-08-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:128777 Serial 8732
Permanent link to this record
 

 
Author De Valck, J.; Beames, A.; Liekens, I.; Bettens, M.; Seuntjens, P.; Broekx, S.
  Title Valuing urban ecosystem services in sustainable brownfield redevelopment Type A1 Journal article
  Year 2019 Publication Ecosystem services Abbreviated Journal
  Volume 35 Issue Pages 139-149
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Urban environments provide opportunities for greater resource efficiency and the fostering of urban ecosystems. Brownfield areas are a typical example of underused land resources. Brownfield redevelopment projects that include green infrastructure allow for further ecosystems to be accommodated in urban environments. Green infrastructure also deliver important urban ecosystem services (UES) to local residents, which can greatly contribute to improving quality of life in cities. In this case study, we quantify and assess the economic value of five UES for a brownfield redevelopment project in Antwerp, Belgium. The assessment is carried out using the “Nature Value Explorer” modelling tool. The case includes three types of green infrastructure (green corridor, infiltration gullies and green roofs) primarily intended to connect nature reserves on the urban periphery and to avoid surface runoff. The green infrastructure also provides air filtration, climate regulation, carbon sequestration and recreation ecosystem services. The value of recreation far exceeds other values, including the value of avoided runoff. The case study raises crucial questions as to whether existing UES valuation approaches adequately account for the range of UES provided and whether such approaches can be improved to achieve more accurate and reliable value estimates in future analyses.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000457119300016 Publication Date 2018-12-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:157539 Serial 8733
Permanent link to this record
 

 
Author Deutsch, F.; Stranger, M.; Kaplinskii, A.E.; Samek, L.; Joos, P.; Van Grieken, R.
  Title O vlijanii kolitsjestva osadkov na kontsentratsioe elementov i ionov v tsjastitsach gorodskogo aerozolja Type A3 Journal article
  Year 2003 Publication Optika atmospheri i okeana Abbreviated Journal
  Volume 16 Issue 10 Pages 927-932
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:43705 Serial 8738
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B.
  Title Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal
  Volume 9 Issue 12 Pages 125223
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000515525300002 Publication Date 2019-12-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:167551 Serial 8740
Permanent link to this record
 

 
Author Vanderborght, B.M.; Van Grieken, R.E.
  Title Water analysis by spark-source mass-spectrometry after preconcentration on activated carbon Type A1 Journal article
  Year 1980 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
  Volume 27 Issue 5 Pages 417-422
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract For trace analyses of environmental waters, spark-source mass-spectrometry has been combined with a preconcentration procedure involving chelation of the dissolved trace elements with oxine and subsequent adsorption of the oxinates and naturally occurring organic and colloidal metal species onto activated carbon. The activated carbon is filtered off and ashed at low temperature. The residue is dissolved, an internal standard and pure graphite are added and, after drying, the electrodes are prepared. The photographically recorded mass spectrum is evaluated by a suitable computer routine. The error of the procedure is around 30%. While this preconcentration and analysis procedure is capable of measuring about 40 elements quantitatively, in practice 1025 trace elements are determined simultaneously above the 0.1-μg/l. detection limit, as is illustrated by analyses of drinking water, surface and ground water samples. Although a sophisticated technique, SSMS can be considered for regular panoramic survey analyses.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1980JR07800006 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:116557 Serial 8746
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; Clauwaert, P.; Alloul, A.; Coessens, W.; Christiaens, M.; Vanoppen, M.; Rabaey, K.; Verliefde, A.R.D.; Vlaeminck, S.E.
  Title Water and nutrient recovery from combined urine and grey water treatment in Space Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:151143 Serial 8747
Permanent link to this record
 

 
Author Han, M.; Seuntjens, D.; Al-Omari, A.; Takacs, I.; Meerburg, F.; Murthy, S.; Vlaeminck, S.E.; De Clippeleir, H.
  Title Water and process parameters as controllers for the ammonia to nitrite oxidation rate ratio in activated sludge Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal
  Volume Issue Pages 3 p. T2 - IWA 2017 Conference on Sustainable Waste
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:151110 Serial 8748
Permanent link to this record
 

 
Author de Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; Alonso Farinas, B.; Coessens, W.; Abbas, A.; Christiaens, M.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Rabaey, K.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E.
  Title Water treatment unit breadboard : ground test facility for the recycling of urine and shower water for one astronaut Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal
  Volume Issue Pages 2 p. T2 - 5th IWA Benelux Young Water Professional
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:151114 Serial 8749
Permanent link to this record
 

 
Author Mishra, V.K.; Kumar, P.; Van Poppel, M.; Bleux, N.; Frijns, E.; Reggente, M.; Berghmans, P.; Int Panis, L.; Samson, R.
  Title Wintertime spatio-temporal variation of ultrafine particles in a Belgian city Type A1 Journal article
  Year 2012 Publication The science of the total environment Abbreviated Journal
  Volume 431 Issue Pages 307-313
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Simultaneous measurements of ultrafine particles (UFPs) were carried out at four sampling locations situated within a 1 km(2) grid area in a Belgian city, Borgerhout (Antwerp). All sampling sites had different orientation and height of buildings and dissimilar levels of anthropogenic activities (mainly traffic volume). The aims were to investigate: (i) the spatio-temporal variation of UFP within the area, (ii) the effect of wind direction with respect to the volume of traffic on UFP levels, and (iii) the spatial representativeness of the official monitoring station situated in the study area. All sampling sites followed similar diurnal patterns of UFP variation, but effects of local traffic emissions were evident. Wind direction also had a profound influence on UFP concentrations at certain sites. The results indicated a clear influence of local weather conditions and the more dominant effect of traffic volumes. Our analysis indicated that the regional air quality monitoring station represented the other sampling sites in the study area reasonably well; temporal patterns were found to be comparable though the absolute average concentrations showed differences of up to 35%. (C) 2012 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000306887900037 Publication Date 2012-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:101123 Serial 8759
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C.
  Title The work function of few-layer graphene Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 29 Issue 3 Pages 035003
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000425250600002 Publication Date 2016-11-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 61 Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:164938 Serial 8760
Permanent link to this record
 

 
Author Török, S.; Labar, J.; Schmeling, M.; Van Grieken, R.
  Title X-ray spectrometry Type A1 Journal article
  Year 1998 Publication Analytical chemistry Abbreviated Journal
  Volume 70 Issue Pages 495r-517r
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000074161100020 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:20967 Serial 8776
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K.
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal
  Volume 2022 Issue 436 Pages 141309-141315
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000882442300001 Publication Date 2022-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:191107 Serial 8855
Permanent link to this record
 

 
Author Van Echelpoel, R.; Schram, J.; Parrilla, M.; Daems, D.; Slosse, A.; Van Durme, F.; De Wael, K.
  Title Electrochemical methods for on-site multidrug detection at festivals Type A1 Journal article
  Year 2022 Publication Sensors & Diagnostics Abbreviated Journal
  Volume 1 Issue 1 Pages 793-802
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Two electrochemical methodologies, i.e. flowchart and dual-sensor, were developed to aid law enforcement present at festivals to obtain a rapid indication of the presence of four illicit drugs in suspicious samples encountered.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2022-06-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:188521 Serial 8856
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K.
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal
  Volume 436 Issue Pages 141446-11
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000914833800003 Publication Date 2022-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:191622 Serial 8858
Permanent link to this record
 

 
Author Moro, G.; Foumthuim, C.J.D.; Spinaci, M.; Martini, E.; Cimino, D.; Balliana, E.; Lieberzeit, P.; Romano, F.; Giacometti, A.; Campos, R.; De Wael, K.; Moretto, L.M.
  Title How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures : an electrochemical and computational study Type A1 Journal article
  Year 2022 Publication Analytica chimica acta Abbreviated Journal
  Volume 1204 Issue Pages 339740-12
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltam-metric techniques. The experimental data interpretation was supported by molecular dynamics simu-lations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.(c) 2022 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000789493000010 Publication Date 2022-03-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:188658 Serial 8880
Permanent link to this record
 

 
Author Wagaarachchige, J.D.; Idris, Z.; Arstad, B.; Kummamuru, N.B.; Sætre, K.A.S.; Halstensen, M.; Jens, K.-J.
  Title Low-viscosity nonaqueous sulfolane–amine–methanol solvent blend for reversible CO2 capture Type A1 Journal article
  Year 2022 Publication Industrial and engineering chemistry research Abbreviated Journal
  Volume 61 Issue 17 Pages 5942-5951
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract In this work, the absorption–desorption performance of CO2 in six new solvent blends of amine (diisopropylamine (DPA), 2-amino-2-methyl-1-propanol (AMP), methyldiethanolamine (MDEA), diethanolamine (DEA), diisopropanolamine (DIPA), and ethanolamine (MEA)), sulfolane, and methanol has been monitored using ATR-FTIR spectroscopy. Additionally, NMR-based species confirmation and solvent viscosity analysis were done for DPA solvent samples. The identified CO2 capture products are monomethyl carbonate (MMC), carbamate, carbonate, and bicarbonate anions in different ratios. The DPA solvent formed MMC entirely with 0.88 molCO2/molamine capture capacity, 0.48 molCO2/molamine cyclic capacity, and 3.28 mPa·s CO2-loaded solvent viscosity. MEA, DEA, DIPA, and MDEA were shown to produce a low or a negligible amount of MMC while AMP occupied an intermediate position.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2022-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:199111 Serial 8895
Permanent link to this record
 

 
Author Ma, X.; Pavlidis, G.; Dillon, E.; Beltran, V.; Schwartz, J.J.; Thoury, M.; Borondics, F.; Sandt, C.; Kjoller, K.; Berrie, B.H.; Centrone, A.
  Title Micro to nano : multiscale IR analyses reveal zinc soap heterogeneity in a 19th-century painting by Corot Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal
  Volume 94 Issue 7 Pages 3103-3110
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (mu-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with approximate to 500 and approximate to 10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (mu-FTIR approximate to 10(2) mu m(3), O-PTIR approximate to 10(-1) mu m(3), PTIR approximate to 10(-5) mu m(3)). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often << 0.1 mu m(3)) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (approximate to 1530-1558 cm(-1)) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at approximate to 1596 cm(-1). We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000766206700011 Publication Date 2022-02-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:187380 Serial 8897
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K.
  Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal
  Volume 179 Issue Pages 107518-107519
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000809675500010 Publication Date 2022-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:188454 Serial 8910
Permanent link to this record
 

 
Author Parrilla, M.; Slosse, A.; Van Echelpoel, R.; Montiel, F.N.; Langley, A.R.; Van Durme, F.; De Wael, K.
  Title Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device Type A1 Journal article
  Year 2022 Publication Chemosensors Abbreviated Journal
  Volume 10 Issue 3 Pages 108-116
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The smuggling of illicit drugs urges the development of new tools for rapid on-site identification in cargos. Current methods rely on presumptive color tests and portable spectroscopic techniques. However, these methods sometimes exhibit inaccurate results due to commonly used cutting agents, the colorful nature of the sample or because the drugs are smuggled in common goods. Interestingly, electrochemical sensors can deal with these specific problems. Herein, an electrochemical device is presented that uses affordable screen-printed electrodes for the electrochemical profiling of several illicit drugs by square-wave voltammetry (SWV). The identification of the illicit compound is based on the oxidation potential of the analyte. Hence, a library of electrochemical profiles is built upon the analysis of illicit drugs and common cutting agents. This library allows the design of a tailor-made script that enables the identification of each drug through a user-friendly interface (laptop or mobile phone). Importantly, the electrochemical test is compared by analyzing 48 confiscated samples with other portable devices based on Raman and FTIR spectroscopy as well as a laboratory standard method (i.e., gas chromatography-mass spectrometry). Overall, the electrochemical results, obtained through the analysis of different samples from confiscated cargos at an end-user site, present a promising alternative to current methods, offering low-cost and rapid testing in the field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000775813500001 Publication Date 2022-03-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:187766 Serial 8920
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K.
  Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
  Year 2022 Publication Drug testing and analysis Abbreviated Journal
  Volume 14 Issue 8 Pages 1471-1481
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000790965700001 Publication Date 2022-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:187767 Serial 8921
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; Ceto, X.; De Wael, K.; del Valle, M.
  Title Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies Type A1 Journal article
  Year 2022 Publication Sensors and actuators : B : chemical Abbreviated Journal
  Volume 357 Issue Pages 131345
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the mu M level, LODs between 1.8 and 5.3 mu M for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of the individual substances from the overlapped voltammograms was built using partial least squares regression (PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the mu M level, with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000745113900003 Publication Date 2021-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:185446 Serial 8922
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Pelmuş, M.; Gorun, S.M.; De Wael, K.
  Title The role of singlet oxygen, superoxide, hydroxide, and hydrogen peroxide in the photoelectrochemical response of phenols at a supported highly fluorinated zinc phthalocyanine Type A1 Journal article
  Year 2022 Publication ChemElectroChem Abbreviated Journal
  Volume 9 Issue 6 Pages e202200108-10
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Photoelectrochemical (PEC) sensing of phenolic compounds using singlet oxygen (1O2)-generating photocatalysts has emerged as a powerful detection tool. However, it is currently not known how experimental parameters, such as pH and applied potential, influence the generation of reactive oxygen species (ROS) and their photocurrents. In this article, the PEC response was studied over the 6 to 10 pH range using a rotating (ring) disk (R(R)DE) set-up in combination with quenchers, to identify the ROS formed upon illumination of a supported photosensitizer, F64PcZn. The photocurrents magnitude depended on the applied potential and the pH of the buffer solution. The anodic responses were caused by the oxidation of O2.−, generated due to the quenching of 1O2 with −OH and the reaction of 3O2 with [F64Pc(3-)Zn]. The cathodic responses were assigned to the reduction of 1O2 and O2.−, yielding H2O2. These insights may benefit 1O2 – based PEC sensing applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000773947300003 Publication Date 2022-02-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:187524 Serial 8926
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J.
  Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal
  Volume Issue Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000823205700001 Publication Date 2022-06-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited 2 Open Access OpenAccess
  Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved (up) no
  Call Number UA @ admin @ c:irua:189541 Serial 8928
Permanent link to this record
 

 
Author Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A.
  Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
  Year 2022 Publication Physical review letters Abbreviated Journal
  Volume 129 Issue 6 Pages 067402
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000842367600007 Publication Date 2022-08-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:198538 Serial 8936
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K.
  Title Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose Type A1 Journal article
  Year 2022 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
  Volume 249 Issue Pages 123695-123699
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5–22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000826441800002 Publication Date 2022-06-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:188955 Serial 8955
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K.
  Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
  Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal
  Volume 197 Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000719366400003 Publication Date 2021-11-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved (up) no
  Call Number UA @ admin @ c:irua:183086 Serial 8957
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.; Jacob, W.; Alfimov, M.
  Title Characterization of complex silver halide photographic systems by means of analytical electron microscopy Type A1 Journal article
  Year 1995 Publication Microbeam analysis Abbreviated Journal
  Volume 4 Issue 1 Pages 1-29
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Deerfield Beach, Fla Editor
  Language Wos A1995RR65700001 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1061-3420 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 9 Open Access
  Notes Approved (up) PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:12275 Serial 318
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.; Jacob, W.; Alfimov, M.
  Title Characterization of complex silver halide photographic systems by means of analytical electron microscopy Type A1 Journal article
  Year 1994 Publication Microbeam analysis Abbreviated Journal
  Volume 3 Issue Pages 1-29
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Deerfield Beach, Fla Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1061-3420 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved (up) PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:10314 Serial 319
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: